
PARIS DESCARTES UNIVERSITY
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MASTER’S THESIS

Attention-based Encoder-Decoder Networks for
Spelling and Grammatical Error Correction

Author:

Sina AHMADI

Supervisors:

Joseph LE ROUX

Nadi TOMEH

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Artificial Intelligence

September, 2017

http://sinaahmadi.github.io/
http://lipn.univ-paris13.fr/~leroux/
http://lipn.univ-paris13.fr/~tomeh/

i

Dedicated to Dad and Mom,

and my love, Ioanna

Acknowledgements

I would first like to thank my thesis supervisors Dr. Joseph Le Roux and Dr. Nadi Tomeh

of RCLN team at the Laboratoire d’Informatique de Paris Nord at the University of Paris

13. During the six months of my internship, they were always around whenever I ran

into a trouble spot or had a question about my research or my codes. They consistently

allowed this thesis to be my own work, but steered me in the right direction.

I would also like to acknowledge the head of the Machine Learning for Data Science

(MLDS) team at Paris Descartes University, Dr. Mohamed Nadif. Furthermore, I am

gratefully indebted to Dr. Kyumars S. Esmaili and Jalal Sajadi for their very valuable

presence and friendship during my studies.

Finally, I must express my very profound gratitude to my parents, my wife Ioanna

and our whole family, for their unconditional love, their forbearance and for providing

me with unfailing support and continuous encouragement throughout my years of study

and through the process of researching and writing this thesis. This accomplishment

would not have been possible without them.

ii

Abstract

Automatic spelling and grammatical correction systems are one of the most widely used

tools within natural language applications. In this thesis, we assume the task of error

correction as a type of monolingual machine translation where the source sentence is

potentially erroneous and the target sentence should be the corrected form of the input.

Our main focus in this project is building neural network models for the task of error

correction. In particular, we investigate sequence-to-sequence and attention-based mod-

els which have recently shown a higher performance than the state-of-the-art of many

language processing problems. We demonstrate that neural machine translation models

can be successfully applied to the task of error correction.

While the experiments of this research are performed on an Arabic corpus, our meth-

ods in this thesis can be easily applied to any language.

Keywords— natural language error correction, recurrent neural networks, encoder-

decoder models, attention mechanism

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures viii

List of Tables ix

List of Abbreviations x

1 Introduction 11

1.1 Motivations . 11

1.2 Contributions . 14

1.3 Thesis Outline . 15

1.4 Target Audience . 15

2 Related work 16

2.1 Error detection techniques . 16

2.1.1 Dictionary lookup . 16

2.1.2 n-gram analysis . 17

2.2 Error correction techniques . 17

2.2.1 Minimum edit distance . 18

2.2.2 Similarity key technique . 18

2.2.3 Rule-based techniques . 18

iv

Contents v

2.2.4 Probabilistic techniques . 19

3 Background 21

3.1 Neural Networks . 21

3.1.1 Multilayer Perceptron . 23

3.1.1.1 Back-propagation . 24

3.1.2 Recurrent Neural Networks . 26

3.1.2.1 Backpropagation Through Time 27

3.1.2.2 Long short-term memory 28

3.1.3 Bidirectional Recurrent Neural Network 29

3.1.4 Sequence-to-sequence models . 31

3.1.5 Attention mechanism . 32

3.2 Evaluation metrics . 34

3.2.1 Standard metrics . 35

3.2.2 MaxMatch (M2) . 36

3.2.2.1 Method . 36

3.2.3 I-measure . 39

3.2.3.1 Method . 40

3.2.4 BLEU and GLEU . 41

4 Experimental Setup 43

4.1 Task . 43

4.2 The QALB corpus . 44

4.2.1 QALB corpus structure . 45

4.2.2 Creating data sets . 47

4.2.3 Refining data sets . 48

4.3 Technical details . 48

5 Correction models 50

5.1 Sentence Representation . 50

5.2 Models . 51

5.2.1 RNN model . 51

5.2.2 BRNN model . 52

5.2.3 Encoder-decoder model . 52

Contents vi

5.2.4 Attention-based encoder-decoder 53

5.3 Output generation . 53

6 Experiments and Results 55

6.1 Data . 55

6.2 Baseline system . 56

6.3 Results of the models . 57

6.3.1 MaxMatch M2 . 57

6.3.2 I-measure . 58

6.3.3 BLEU and GLEU . 59

7 Conclusion and future work 60

7.1 Limitations . 60

7.2 Future studies . 61

7.3 Conclusion . 61

A Appendix 63

A.1 Adam . 63

A.2 Annotation example from the QALB corpus 64

A.3 Error calculation . 65

A.4 Qualitative comparison of the correction models 67

Bibliography 67

List of Figures

1.1 A recurrent network (in left) vs. a feed-forward network (in right). 13

1.2 Encoder-Decoder model. Encoder units are specified in cyan and decoder

units in gray. Green rectangles refer to the Softmax function, used for a

probabilistic interpretation for the output. 14

3.1 A simple Perceptron (in left) vs. a Multi-Layer Perceptron (in right) 22

3.2 Most common activation functions: sigmoid, tanh, ReLU. 23

3.3 A Recurrent Neural Network with one hidden layer in different time

steps. The gradient calculation for time step t is shown in red. 26

3.4 Activation function tanh and its derivative 28

3.5 Architecture of LSTM. The gates are implemented to compute a value

between 0 and 1 and are multiplied to partially allow or deny information

to flow into or out of the memory (cell state). The final value for a given

input is then transfered to the output connection of the layer. 29

3.6 A bidirectional recurrent neural network model 30

3.7 Sequence-to-sequence model for three time steps. The state vector of the

last layer of the encoder is passed to the decoder as input. Consequently,

each output of the decoder is used as the input of the succeeding layer in

the decoder. 31

vii

List of Figures viii

3.8 Attention-based sequence-to-sequence model for three time steps. The red

arrows depict the connection of the intermediate vector c with the state

units of the decoder. 33

3.9 Levenshtein edit distance matrix for the input and the prediction in

example 3.2.2.1 . 37

3.10 Edit lattice of matrix 3.9. Transitive edits are weighted by the sum of the

consisting parts. 38

3.11 An example of conversion of the gold-standard m2 format to the annota-

tion scheme of I-measure . 39

4.1 An example of the correction process based on the structure of the QALB

corpus. S and A refer respectively to the beginning of the sentence and

the gold annotators’ correction . 45

4.2 Actions used by annotators for correction in the QALB corpus 46

4.3 Existing characters in the QALB corpus, each one separated by a space . . 48

4.4 Number of words based on frequency in the QALB corpus 49

5.1 A recurrent neural network for error correction. The input is a potentially

erroneous sequence. The output of the model is supposed to be the

corrected form of the input. Note the fix size of the input and output

sequence. 51

A.1 An annotation example from the QALB corpus. Following line S which

refers to the potentially wrong original text, the correction actions are

added for each incorrect token in A lines. 64

A.2 Correction of an input using different models. The size of each sequence

is marked in the header of each sequence. 67

List of Tables

3.1 Extended Writer-Annotator-System evaluation system 41

6.1 Train, validation and test set of the QALB corpus. 56

6.2 Evaluation results of the models using MaxMatch M2 metric. Bold

numbers indicate the best method per measure. 57

6.3 Evaluation of the models using I-measure metric 58

6.4 Evaluation of the models using BLEU and GLEU metrics 59

7.1 Evaluation of models using fixed-size sequences 61

ix

List of Abbreviations

ANN Artificial Neural Networks.

BPTT Back-Propagation Through Time.

BRNN Bidirectional Recurrent Neural Network.

CRF Conditional Random Field.

GRU Gated Recurrent Unit.

HMM Hidden Markov Models.

LSTM Long Short-Term Memory.

MLP Multilayer Perceptron.

NMT Neural Machine Translation.

QALB Qatar Arabic Language Bank.

RNN Recurrent Neural Network.

SGD Stochastic Gradient Descent.

SMT Statistical Machine Translation.

x

CHAPTER 1

Introduction

1.1 Motivations

Automatic spelling and grammar correction is the task of automatically correcting errors

in written text. If you type an incorrect word in a text environment in a phone or on text-

editor software, it would be detected as an error, which means that the word is not the

best choice for that context. It is then auto-corrected using another word, or a list of pos-

sible alternative words is suggested. Nowadays, error correction systems are inseparable

components of any text-related application.

A few months ago, a tweet from Donald Trump went viral: “Despite the constant

negative press covfefe“. Based on our prior knowledge from the context, we can guess

that he meant to use the word ”coverage” rather than ”covfefe”. But how can this prior

knowledge be represented in a computer system?

We can look at the problem of error correction in multiple ways. In traditional meth-

ods, correction models were generally based on the linguistic nature of errors. However,

because of the notorious complexity and irregularity of human language, and the great

variability in the types of error as well as their syntactic and semantic dependencies on

the context, more models that performed better were needed. Example 1.1 demonstrates

examples of error types that seem to need more complex methods than those that are

language-based.

11

1.1. Motivations 12

Example: Different types of errors
• We went to the store and bought new stove. [new stove→ a new stove]

• Mary wishes that she does not live in a dormitory. [does→ did]

• Anni said that he wants too give her a gift. [too→ to]

• He was so quiet that hardly he noticed her. [hardly he noticed→ he hardly noticed]

• I drank a double espresso. Now I’m entirely awake. [entirely→wide]

Given a potentially erroneous input phrase, some approaches use classifiers to gen-

erate corrections by modeling their interactions with, for example, an n-gram [1] or a

Conditional Random Fields model (CRF) [2]. Statistical Machine Translation (SMT) sys-

tems have been used successfully in this context, in particular as a result of the increasing

availability of manually annotated corpora. However, their major drawback is the diffi-

culty of modeling corrections in different granularities, e.g., characters and words, which

is necessary to reduce the rate of unknown words that are detrimental to their proper

functioning. More recently, the use of neural networks has delivered significant gains for

mapping tasks between pairs of sequences, including translation and spelling correction,

due to to their ability to learn a better representation of the data and a better consideration

of the context.

In a simple feed-forward neural network, such as Multi-Layer Perceptron (MLP), we

assume that all inputs and outputs of the network are independent on each other, which

is not the best method for many tasks, particularly for language modeling. By sharing

parameters across different parts of a model, we can turn an MLP into a Recurrent Neu-

ral Network (RNN). RNNs are a set of neural networks for processing sequential data

and modeling long-distance dependencies which is a common phenomenon in human

language. The simplest form of a recurrent neural network is an MLP with the previous

set of hidden unit activations feeding back into the network together with the inputs, so

that the activations can follow a loop. Therefore, unlike feed-forward networks — which

are amnesiacs regarding their recent past — the MLP enables the network to do tempo-

ral processing and learn sequences, which are important features for language modeling.

Figure 1.1 illustrates a feed-forward network and a recurrent network.

In theory, RNNs are capable of handling long-term dependencies, but this is not the

case in practice. Different architectures have been proposed to tackle this problem, from

which we have used Long Short Term Memory (LSTM) architecture. LSTMs help main-

1.1. Motivations 13

Input
layer

Hidden
layer

Output
layer

Figure 1.1: A recurrent network (in left) vs. a feed-forward network (in right).

tain a constant error that can be back-propagated through time and layers, so that they

allow recurrent networks to continue learning gradually over time. Henceforth, our im-

plementation of an RNN model is based on the LSTM architecture.

In this project, we are particularly interested in Encoder-Decoder models. The basic

idea of the model is relatively simple. We use two RNN models: the first encodes the in-

formation of the potentially erroneous input text, as a vector of real-value numbers, while

the second model decodes this information into the target sentence which is the corrected

prediction for the input text. Figure 1.2 demonstrates an encoder-decoder model for error

correction.

The fact that the encoder-decoder attempts to store whole sentences of any arbitrary

length in a hidden vector of fixed size, leads to a substantial size for the network which

hinders the training process for large data sets. On the other hand, even if the net-

work were large, it would not be efficient in terms of memory and time when processing

shorter phrases. In addition, the long-distance dependencies would be ignored by time,

even if LSTM were supposed to correct it. To remedy this problem, an attention mecha-

nism is used to allow the decoder to attend different parts of the source sentence at each

step of the output generation.

The ability to correct errors accurately will improve the reliability of the underlying

applications and thus numerous commercial and academic implications. It facilitates the

construction of software to help foreign language learning, as it reduces noise in the entry

of NLP tools, thus improving their performance, especially on unedited texts that can be

found on the Web.

1.2. Contributions 14

thr unpresidented attaker <eos>

the unprecedentedattacker <eos>

Figure 1.2: Encoder-Decoder model. Encoder units are specified in cyan and decoder
units in gray. Green rectangles refer to the Softmax function, used for a probabilistic
interpretation for the output.

1.2 Contributions

Inspired by the prevailing successes of neural networks, we decided to explore in detail

certain models for the task of spelling and grammar correction. This thesis focuses on

how to create such systems using sequence-to-sequence models together with attention

mechanism. The first of two contributions is the architecture and training of such a model

at character-level. The ultimate aim is to explore whether NMT methods can deliver

competitive results.

Although our research does not aim at a specific language, since models are tested

on an Arabic corpus, this thesis also explores whether this project does contribute better

error correcting than previous works for Arabic. To summarize, the following tasks have

been performed in chronological order:

• Collection and preprocessing data.

• Implementation of our target models using DyNet. Although similar models were

already implemented in other toolkits, e.g., Theano 1, TensorFlow 2, we had to code

the models entirely in DyNet 3.

• Experiments and comparison of our results with the existing results

• Documentation of the research project
1http://www.deeplearning.net/software/theano/
2https://www.tensorflow.org/
3https://github.com/clab/dynet

http://www.deeplearning.net/software/theano/
https://www.tensorflow.org/
https://github.com/clab/dynet

1.3. Thesis Outline 15

1.3 Thesis Outline

This introductory chapter is followed by a review in chapter 2 of previous research on

the same theme. Chapter 3 describes the background methods needed for this research.

In chapter 4, the experimental setup of the work is described. In this section the corpus

is preprocessed and data sets are created. Chapter 5 describes further details about the

models that are used for error correction. In chapter 6, the results of our correction system

are presented. This work is concluded in chapter 7. We will also propose several new

ideas for future works in this domain. The final sections of this thesis are devoted to the

appendices in A and the bibliography in A.4.

1.4 Target Audience

This thesis endeavors to provide clear and coherent information for two audiences: de-

velopers and computational linguists. Since this work does not address the linguistic

aspects of spelling and grammatical error correction, it may not be useful for linguistic

researchers.

CHAPTER 2

Related work

This chapter reviews previous research on automatic spelling and grammar correction.

Section 2.1 presents a general survey on the methods often used for error detection tasks.

Following this section, section 2.2 explains the most common error correction techniques.

Since our principal task is predominantly related to error correction using neural net-

works, the emphasis in chapter 3 is on introducing the basic notions of neural networks,

particularly Recurrent Neural Networks.

2.1 Error detection techniques

In most systems, before any correction is carried out, a detection process is conducted

on the input sentence to extract the potentially incorrect words. Two main techniques [3]

are used to detect non-word spelling errors that are explained in the following sections.

A non-word error refers to a potentially incorrect word that does not exist in a given

dictionary.

2.1.1 Dictionary lookup

Dictionary lookup is one of the basic techniques employed to compare input strings with

the entries of a language resource, e.g., lexicon or corpus. Such a language resource

must contain all inflected forms of the words and it should be updated regularly. If a

16

2.2. Error correction techniques 17

given word does not exist in the language resource, it will be marked as a potentially

incorrect word. Reducing the size of resources and ameliorating the search performance,

through morphological analysis and pattern-matching algorithms (e.g., hashing, search

trees), presents a challenge in this method.

2.1.2 n-gram analysis

Statistical models were designed to assign a probability to a sequence of symbols, e.g.

characters and words. n-gram is one of the popular models that represents an attempt to

count a structure by counting its substructure. Given a sentence C = c1, c2, ..., cl = cl1, we

can define the probability over a character ci as follows:

P (C = c1, c2, ..., cl = cl1) =

l∏
i=1

P (ci|c1, c2, ..., ci−1) (2.1)

Assuming different n-values in the n-gram model, we can create different probabilis-

tic models. In a unigram model (n = 1), the probability of each character is calculated

independently from previous characters, i.e., P (ci|c1, c2, ..., ci−1) ≈ P (ci). Although the

unigram model ignores the context by taking only the current character ci into account,

the models where n > 1 can represent a more accurate probability of the characters, since

P (ci|c1, c2, ..., ci−1) ≈ P (ci|ci−n, ..., ci−1). A simple way to estimate probabilities for each

character is known as maximum likelihood estimation (MLE). Equation 2.2 calculates the

n-gram probability by dividing the number of times a particular string is observed by the

frequency of the context.

P (ci|ci−1i−n+1) =
count(cii−n+1)

count(ci−1i−n+1)
(2.2)

For the task of error detection, n-gram analysis estimates the likelihood that a given

input will be correctly spelled. To accomplish this, a pre-calculated n-gram statistic from

the language resource is provided for comparative tasks. The choice of n depends on the

size of the training corpus.

2.2 Error correction techniques

The task of machine correction is defined as correcting a N -character source sentence

S = s1, ..., sN = sN1 into a M − character target sentence T = t1, ..., tM = tM1 . Thus, any

2.2. Error correction techniques 18

type of correction system can be defined as a function MC:

T̂ =MC(S) (2.3)

which returns a correction hypothesis T̂ given an input word S. In the case of word-

level models, inputs can be considered as the source words and the output are the pre-

dicted words based on the same function.

2.2.1 Minimum edit distance

Minimum edit distance is one of the most studied techniques for error correction. It is

based on counting editing operations, which are defined in most systems as insertion,

deletion, substitution and transposition, in order to transform an incorrect input into the

most probable word, i.e., the one with least edit distance. Hamming [4], Jaro–Winkler

[5], Wagner–Fischer [6], Damerau-Levenshtein [7] and Levenshtein [8] are among the

most famous edit distance algorithms. We will Levenshtein distance later in one of the

evaluation metrics in section 3.2.2.

2.2.2 Similarity key technique

Similarity key technique is another technique for error correction. It is based on classify-

ing characters into the groups with similar keys. When a word is detected to be poten-

tially incorrect, its characters are mapped into the pre-defined keys so that all other words

in the language resource that have the same key are suggested as correction candidates.

The candidates are then ranked according to the minimum edit distance.

Various algorithms propose different approaches to design key groups for characters

of a language. In general, the similarity is measured based on the position and the order

of the characters in the words. Anagrams and the phonology of language are suitable

factors to construct corresponding keys for each character. Soundex [9], Metaphone [10]

and SPEEDCOP [11] and Caverphone [12] are among the most common methods using

similarity key technique.

2.2.3 Rule-based techniques

By analyzing the most common spelling errors, some researchers have attempted to cre-

ate a knowledge base of errors for the task of correction [13, 14, 15] using rule-based

2.2. Error correction techniques 19

models that encode grammatical knowledge. These rules are generally based on the mor-

phological characteristics of the language.

2.2.4 Probabilistic techniques

Approaches based on stochastic models that learn a suitable representation from data

have been also used for error correction tasks. Statistical machine correction systems,

like the similar systems in machine translation [16]. They perform their task by creating

a probabilistic model on sequences of symbols, e.g., characters and words, also known as

language model, in such a way that the desired output has the highest probability giving

specific parameters of the model θ. Therefore, we have:

T̂ = argmax
T

P (T |S; θ) (2.4)

which is called the Fundamental Equation of Machine Translation [17].

Various approaches are used to model the probability. n-gram-based language mod-

els, as mentioned in section 2.1.2, often also function as a probabilistic technique for error

correction. Another common method is the log-linear language model [18] which calcu-

lates the probability by creating a feature vector that describes the context using different

features and then calculating a score vector that corresponds to the likelihood of each

symbol.

More highly complex probabilistic network representations have been also introduced

[16, 19]. Hidden Markov Models (HMM), for example, have demonstrated a strong abil-

ity to model human language [20], ut since HMMs assume conditional independence of

the previous words except the last one, they are not a practicable choice for modeling the

long-distance dependencies. On the other hand, the recurrent neural networks (RNN)

have been demonstrated to be more capable of modeling such dependencies [21].

Neural networks are also based on the probability distribution of language and they

have shown recent success in different tasks related to natural language processing. This

study focuses on attention-based encoder decoder neural networks for error correction.

Such systems consist of two components: an encoder that computes a representation for

an input sentence, and a decoder that generates one target word at a time and decom-

poses the conditional probability as

2.2. Error correction techniques 20

log(p(T |S)) =
m∑
j=1

logp(tj ; t<j , S) (2.5)

where tj is the current word of sentence T , t<j refers to the previous words and S is

the source sentence.

These neural machine translation (NMT) systems have been used in recent related

works with different architectures of the decoder and different representations in the en-

coder. Kalchbrenner and Blunsom [22] used an RNN for the decoder and a convolutional

neural network for encoding the source sentence. Sutskever et al. [23] and Luong et al.

[24], on the other hand, have used multiple layers of an RNN with a Long Short-Term

Memory (LSTM) hidden unit for both encoder and decoder. Cho et al. [25], Bahdanau et

al. [26] and Jean et al. [27] have all used another architecture for hidden units, the Gated

Recurrent Unit (GRU), for both encoding and decoding components.

The work of Luong et al. [24] is the most relevant to the present study. While our

aim is to apply the same principals to error correction task in character-level models. We

can also say that this work is the continuation of the generalized character-level spelling

error correction presented in [28] which is a model that maps input characters into output

characters using supervised learning. Although the model is applied to correct errors in

Arabic, it does not consider morphological or linguistic features. On the other hand, the

model is context-sensitive, and it explores beyond the context of the given word.

CHAPTER 3

Background

This chapter is divided into two sections and provides an overview of the background

needed for constructing our error correction system: section 3.1 explains the most impor-

tant characteristics of neural networks and special methods that can be used for model-

ing long-distance dependencies. Section 3.2 then addresses the most common evaluation

metrics for error correction systems. The evaluation results of our designed models in

chapter 5 are analyzed in chapter 6.

3.1 Neural Networks

Artificial neural networks (ANN) were originally developed as mathematical models in-

spired by the biological neural networks. A biological neural network is an intercon-

nected network of neurons transmitting elaborate patterns of electrical signals. Dendrites

receive input signals and, based on those inputs, trigger an output signal via an axon. An

ANN follows the same principle using mathematical computations to process inputs.

In 1943, McCulloch and Pitts modeled mathematically the biological neural networks

[29]. This network could solve binary problems but without learning. Later, in 1957,

Rosenblatt presented the first ANN that was able to vary its own weights, in other words,

the network could learn and ameliorate itself (Figure 3.1).

The perceptron computes a single output from multiple real-valued inputs by form-

21

3.1. Neural Networks 22

Activation
function∑

w2x2

...
...

wnxn

w1x1

w01

inputs weights

x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Figure 3.1: A simple Perceptron (in left) vs. a Multi-Layer Perceptron (in right)

ing a linear combination according to its input weights and then possibly putting the out-

put through some nonlinear activation function. Technically speaking, let x1, x2, ..., xn ε

be n scalar inputs of the network. Output y, as function of a sum of weighted inputs is

computed by:

z =

n∑
i=1

wixi + b = wTx+ b (3.1)

where w=(w1, w2, ..., wn) ε is corresponding weights, b ε is bias and ϕ is an activation

function. The weight is often referred to as pre-activation and the bias is replaced by an

equivalent input term x0 = 1 weighted byw0 = b. Note that this is simply the dot product

of the weight vector w and the input vector x. The result of this affine transformation z is

then passed through a step function that determines the binary output of the Perceptron.

y =

1 ifz ≥ 0

0 otherwise
(3.2)

Given a training pair (x, y), the parameters of the network, i.e., weights and bias, are

learning using the following rule:

wi ← wi − η.(ŷ − y).xi (3.3)

where ŷ is the output of the Perceptron, y is the desired output and η is the learning

rate to adjust the updating magnitude. Note that the ← refers to the assignment of the

new value of wi.

3.1. Neural Networks 23

3.1.1 Multilayer Perceptron

Although conceptually remarkable, Perceptron is significantly limited in modeling non-

linearly separable problems. A famous example is that of the XOR logic operation which

cannot be solved by a linear transformation. An evolution of Perceptrons introduces an

intermediate between the input and the output, which is known as the hidden layer.

Hidden layers allow the pre-activation to be followed by a nonlinearity, which produces

a nonlinear transformation that can map the input into a linearly separable space, such

as the case of XOR. Figure 3.1 demonstrates an MLP.

-2 -1 0 1 2
-1

0

1

2

z

f(z)

logistic(z)
tanh(z)

ReLU(z)

Figure 3.2: Most common activation functions: sigmoid, tanh, ReLU.

An MLP is a network of Perceptrons grouped in interconnected layers. Each connec-

tion from the i-th neuron of layer l-1 to the j-th neuron of layer l is associated to a weight

w
(l)
ij , and all the weights are stored in a matrix W (l). It is a feed-forward neural network

with one or more hidden layers between the input and output layer. Feed-forward means

that data flows in one direction from input to output layer. Similar to the Perceptron, each

layer computes an affine transformation as follows:

z(l) =W (l).a(l−1) (3.4)

Generally, each layer of an ANN computes some activation based on its input and a

nonlinear activation function. The choice of which activation function to use in each layer

can have a significant impact on the performance of the model. An activation function is

a non-linear function that maps any real-valued number to a reduced range. Hyperbolic

tangent (tanh), logistic function and rectified linear unit (ReLU) function are among the

most common activation function. They do the aforementioned mapping in [-1, 1], [0, 1]

and [0, x] respectively. These functions are illustrated in figure 3.2.

3.1. Neural Networks 24

tanh(x) =
e2x − 1

e2x + 1
(3.5)

σ(x) =
1

1 + e−x
(3.6)

ReLU(x) = max(0, x) (3.7)

Both the number of units in the output layer and the choice of output activation func-

tion depend on the task. Binary classification can be performed with a one-neuron output

layer. An output can be interpreted as the probability Pr(True|x) of assigning a prede-

fined class to an input x. In the case that a logistic sigmoid is used as the activation

function, the model is called logistic regression, or a logit model. In a more general way,

we can solve the same problematic for an N-class classification (N > 2) task, by using

N output neurons normalizing by a softmax function [30]. The softmax is a squashing

function that maps its input to a categorical distribution. It is defined as follows:

softmax(z)
i

=
exp(zi)∑N
n=0 exp(zn)

(3.8)

where z refers to the affine transformation mentioned in equation 3.1.

3.1.1.1 Back-propagation

Since the solution of the network exists in the values of the parameters (weights and bias)

θ between neurons, an optimization process is needed to acquire parameters that fit the

training corpus. One of the most common algorithms is termed back-propagation. The

basic idea is to modify each weight of the network by a factor proportional to the error,

i.e., the difference between the desired output and the output of the network. Different

functions have been introduced as objective function to calculate the error from which

we use the Cross-Entropy cost as follows:

H(ŷ − y) =
∑
i

yilog
1

ŷi
= −

∑
i

yilogŷi (3.9)

where ŷi =MLP (xi; θ) refers to the output of the network and y is the desired output.

The summation computes the overall loss of the network on a single pair. An objective

function is either a loss function or its negative form. Here, we assume that equation 3.9

is our objective function. In fact, we calculate the error in order to reduce it for each pair

3.1. Neural Networks 25

by searching for the best parameters θ:

θ∗ = argmin
θ

H(ŷ − y) (3.10)

Since MLPs are differentiable operators, except for the case where ReLU function is

used, they can be trained to minimize any differentiable cost function using gradient de-

scent. The gradient descent aims to determine the derivative of the objective function

with respect to each of the network weights, then adjust the weights in the direction of

the negative slope. Having said that since the ReLU function is not differentiable, Leaky

ReLU is generally used for back-propagation where:

LeakyReLU(x) =

 x

ifx > 00.01x otherwise
(3.11)

Stochastic Gradient Descent Stochastic Gradient Descent (SGD) is an iterative process

where we pick an observation uniformly at random, say i and attempt to improve the

likelihood with respect to the observation. Each iteration, also called epoch, θ is updated

as follows:

θ ← θ − ηOxiH(ŷ − y) (3.12)

where η is the learning rate that determines the size of the steps needed to reach a

local minimum. In other words, the gradient follows the slope direction of the surface

created by the objective function until it reaches a minimum.

While SGD performs one update at a time, two variants of SGD perform this update

differently. In the Vanilla Gradient Descent method, the gradient of the loss function

is computed for the entire training set. Thus, it can be extremely slow and intractable

for large training sets. On the other hand, the Mini-batch Gradient Descent — instead

of calculating the entire training set — divides it into small subsets and computes the

gradient with respect to a subset of the training set. In other words, this model uses the

efficiency of the Vanilla Gradient Descent in finding the optimal convergence and the

performance of the stochastic variant.

In appendix A.1 we will introduce Adaptive Moment Estimation (Adam) optimiza-

tion method as well.

3.1. Neural Networks 26

3.1.2 Recurrent Neural Networks

Recurrent neural network (RNN) is another type of neural network that is particularly

used for language processing tasks. The main characteristic of an RNN, in addition to

those of any ANN (e.g., units and parameters), is the cyclic connections that each unit

can have. This provides a memory-like functionality for the RNN which could be an

appropriate model for language processing. Unlike a simple MLP that maps inputs into

the outputs directly, an RNN can make use of, theoretically, all the previous inputs for

each output, thus providing an internal state other than the network’s parameters.

In order to create an RNN, we first need to compress a sequence of input symbols

X = (x1, x2, ..., xn) into a fixed-dimensional vector by using recursion. Using this vector

enables us to deal with variable-length inputs and outputs. Then, assume at step t that

we have a vector ht−1 which is the history of all previous symbols before the current one.

The RNN will compute the new vector, or its internal state, ht which compresses all the

previous symbols (x1, x2, . . . , xt−1) as well as the new symbol xt by

ht = tanh(Wxt + Uht−1 + b) (3.13)

ŷt = softmax(V ht) (3.14)

where W is the input weight matrix, U is the recurrent weight matrix, V is the weight

of the hidden layer and b is the bias vector. Although this is not the only way to model

an RNN [31], we have used this formulation in our implementation (which is known as

Elman network [32]).

Inputs

Internal States

Outputs

~x0 ~x1 · · · ~xt−1 ~xt · · · ~xn−1 ~xn

~h0 ~h1 · · · ~ht−1 ~ht · · · ~hn−1 ~hn

~y0 ~y1 · · · ~yt−1 ~yt · · · ~yn−1 ~yn

U

W

V
∂ ~ht
∂ ~hh−1 ∂Ht

∂ ~ht

∂ ~ht−1

∂ ~ht−2

∂ ~hk
∂ ~h1

∂ ~h1
∂ ~h0

Figure 3.3: A Recurrent Neural Network with one hidden layer in different time steps.
The gradient calculation for time step t is shown in red.

Training an RNN is similar to training a traditional Neural Network. We also use

3.1. Neural Networks 27

the back-propagation algorithm, but with some modifications. Since the parameters are

shared by all time steps in the network, the gradient at each output depends not only on

the calculations of the current time step, but also the previous time steps. For instance, in

order to calculate the gradient at t = 4, we need to back-propagate three steps and sum

up the gradients. This method is called Back-propagation Through Time (BPTT).

3.1.2.1 Backpropagation Through Time

In the previous section, we explained the basic mechanism of an RNN. In calculating the

back-propagation, we mentioned that the gradients of the error should be calculated with

respect to the parameters of the network, i.e., U , V and W , for the current and previous

time steps. To do so, we take use of the BPTT algorithm to do so.

Let us assume that we want to calculate the gradients for time step t. To calculate the

gradients, using the chain rule of differentiation, we have:

∂Ht

∂V
=
∂Ht

∂ŷt

∂ŷt
∂V

=
∂Ht

∂ŷt

∂ŷt
∂zt

∂zt
∂V

= (ŷt − yt)⊗ ht (3.15)

where zt = V ht and ⊗ refers to the outer product of two vectors. As we see, ∂Ht
∂V

depends only on the values at the current time step yt, ŷt and ht. Although the gradient

with respect to W and U is a little different:

∂Ht

∂W
=
∂Ht

∂ŷt

∂ŷt
∂ht

∂ht
∂W

(3.16)

where ht is the activation function 3.14 which depends on the previous internal state

ht − 1 which depends on the previous states ht−2, ht−3, ..., h0 and W (shown in figure 3.3

in red). So we need to apply the chain rule on all the previous states to obtain the gradient
∂Ht
∂W as follows:

∂Ht

∂W
=

t∑
k=0

∂Ht

∂ŷt

∂ŷt
∂ht

 t∏
j=k+1

∂hj
∂hj−1

 ∂hk
∂W

(3.17)

where the inner product refers to the chain rule until the lower limit of k. The only

difference between this calculation and that of the standard back-propagation is that we

sum up the gradients for W at each time step. In an MLP, for example, since we don’t

share parameters across layers, so we don’t need to add anything. The calculation above

is the same when we calculate the gradient with respect to U as well.

3.1. Neural Networks 28

−2 −1 1 2

−1

1

x

y

y = tanh(x)

y = d(tanh(x))
dx

Figure 3.4: Activation function tanh and its derivative

Equation 3.17 results in a square matrix including first-order partial derivatives of

the vector of error function, also known as Jacobian matrix. One of the difficulties in

the training process is the tendency of the derivatives of the activation function towards

0 as both extremes (the blue curve in figure 3.4) with a flat curve. Consequently, when

applying the chain rule, the gradient of a layer tends towards 0 and vanishes completely

after a few time steps. Vanishing gradients is a common problem, particularly in the

networks that are intended to model a language. Long-distance dependencies are one of

the characteristics of human language.

A more recent popular solution to confront the problem of the vanishing gradient is

using Gated Recurrent Unit (GRU) or Long Short-Term Memory (LSTM) architectures.

In our project, we used the latter, which is explained in the next section.

3.1.2.2 Long short-term memory

In the previous section, we stated that the vanishing gradient problem prevents standard

RNNs from learning long-term dependencies. Long Short-Term Memory (LSTM) net-

work is an architecture for the RNN, capable of learning long-term dependencies. They

were initially introduced by Hochreiter and Schmidhube [33] and were popularized by

many other works in the following years (particularly in [34, 35, 36, 37, 38]). It is among

the most widely used models in Deep Learning for NLP today.

An LSTM network is composed of memory cells and gate units to calculate the inter-

nal states. Three gates control the behavior of the memory cells: ignore gate i, forget gate

f and output gate o. These gates intuitively determine precisely how much of a given

vector is to be taken into account at a specific time step t. For instance, the input gate

defines how much of current input should go through, the forget input defines much of

3.1. Neural Networks 29

~x

input

~h

output

~it ~ot

~ft

× ×

×

~cttanh tanh

weighted connection
activation function
cell state (memory)

gates
input and state units

LSTM

Figure 3.5: Architecture of LSTM. The gates are implemented to compute a value be-
tween 0 and 1 and are multiplied to partially allow or deny information to flow into or
out of the memory (cell state). The final value for a given input is then transfered to the
output connection of the layer.

the previous state pass and the output gate indicates how much of the internal state be

influenced in the next time steps and next layers. The full architecture of the LSTM is

illustrated in figure 3.5. Formally, an LSTM is defined as:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.18)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (3.19)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.20)

ct = ft.ct−1 + it.tanh(Wxcxt +Whcht−1 + bc) (3.21)

ht = ottanh(ct) (3.22)

where it, ft and ot respectively refer to the input, forget and output gates at time step

t. ct is the memory cell vector at time step t and ht is the output layer. Note that the gates

have the same equations, but with different parameter matrices. Various variations of

LSTM can be found in [39].

3.1.3 Bidirectional Recurrent Neural Network

So far, we have focused on the RNNs that consider the past observation in order to predict

the next symbol in a sequence. For many sequence-labeling tasks, e.g., predicting the

3.1. Neural Networks 30

correct character for a given input, in addition to the past context, we would like to have

access to the future context. To do so, we can use two RNN models; one that reads

through the input sequence forwards (left-to-right propagation) and the other backwards

(right-to-left propagation), both with two different hidden units but connected to the

same output(figure 3.6). This model is called Bidirectional Recurrent Neural Network

(BRNN) [40].

. . . ~st−1 ~st ~st+1 ~st+2 . . . Forward states

←−s t+2
←−s t+1

←−s t←−s t−1Backward states

~xt−1 ~xt ~xt+1 ~xt+2

~ot+2~ot+1~ot
~ot−1

.

Figure 3.6: A bidirectional recurrent neural network model

The right-to-left propagation for the BRNN hidden layers is the same as for a simple

RNN, except that the input sequence is presented in the opposite direction to the two hid-

den layers. Processing the hidden layers of the two RNN models is necessary to update

the output layer. The following equation shows the mathematical formulation behind

setting up the bidirectional RNN hidden layer. Note that calculating the hidden layers

follows the same formulation mentioned in 3.14:

~ht = tanh(~Wxt + ~U~ht−1 +~b) (3.23)
←−
ht = tanh(

←−
Wxt +

←−
U
←−
h t+1 +

←−
b) (3.24)

The corresponding calculation for each direction is shown by using vector on each

formulation. These two calculations are concatenated as ht in equation 3.14. In order to

train such a model, we will need two twice as much memory for the parameters.

BRNNs have previously given improved results in various domains in speech pro-

cessing [41, 42]. More recently, deep BRRN have been used where each lower layer feeds

the next layer [43, 44].

3.1. Neural Networks 31

3.1.4 Sequence-to-sequence models

Apart from long dependency, another challenge in language models using neural net-

works is the variable-length output spaces, e.g., words and sentences. Sequence-to-

sequence neural models, or Encoder-Decoder network, have demonstrated the ability

to address this challenge of the variable length of input and output. It is a generative

neural network model that, given a string of inputs, produces a string of outputs, both of

arbitrary lengths.

h3 = tanh(Wx2 + Uh2 + b)

h2h1

embedding x1 embedding x2 embedding x3

x1 x2 x3

softmax softmax softmax

o1 o2 o3

s1 s2 s3

Figure 3.7: Sequence-to-sequence model for three time steps. The state vector of the last
layer of the encoder is passed to the decoder as input. Consequently, each output of the
decoder is used as the input of the succeeding layer in the decoder.

The sequence-to-sequence model is composed of two processes : encoding and decod-

ing. In the encoding process, the input sequence x = (x1, x2, ..., xT) is fed into the encoder,

which is basically an RNN model. Then, unlike a simple RNN where the output of each

state unit is taken into account, only the hidden unit of the last layer ht is kept; this vector,

often called sentence embedding or context vector c, is intended to contain a representation

of the input sentence:

ht = LSTM(xt, ht−1) (3.25)

c = tanh(hT) (3.26)

where ht is a hidden state at time t, and c is the context vector of the hidden layers of

the encoder.

On the other hand, by passing the context vector c and all the previously predicted

words {y1, y2, ..., y′t−1} to the decoder, the decoding process predicts the next word ′yt.

3.1. Neural Networks 32

In other words, the decoder defines a probability over the output y by decomposing the

joint probability as follows:

p(y) =

T∏
t=1

p(yt|{y1, y2, ..., yt−1}, c) (3.27)

p(yt|{y1, y2, ..., yt−1}, c) = tanh(yt−1, ht, c) (3.28)

where y = (y1, y2, ..., yT) and ht is the hidden unit.

Figure 3.7 depicts an encoding and a decoding process the input sequence of x1, x2, x3.

Softmax function is used in order to normalize the probability distribution for the output.

Later, the Softmax output would be used for calculating the error loss as well.

In some of the first studies that used encoder-decoder RNN models, a fixed-length

vector is used to represent the context of a source sentence [25, 23]. The fact that a fixed-

length, regardless of the size of the input, is used, means a limitation on the model to

represent variable-size input strings. More recently, Bahdanau et al. [26] explored the

attention mechanism in NMT which is discussed in the following section.

3.1.5 Attention mechanism

Attention mechanism was introduced to address the limitation of modeling long depen-

dencies and the efficient usage of memory for computation. The attention mechanism

intervenes as an intermediate layer between the encoder and the decoder, having the ob-

jective of capturing the information from the sequence of tokens that are relevant to the

contents of the sentence [26].

In an attention-based model, a set of attention weights is first calculated. These are

multiplied by the encoder output vectors to create a weighted combination. The result

should contain information about that specific part of the input sequence, and thus help

the decoder select the correct output symbol. Therefore, the decoder network can use

different portions of the encoder sequence as context, while it is processing the decoder

sequence. This justifies the variable-size representation of the input sequence. This mech-

anism is shown in figure 3.8.

Unlike the encoder-decoder model that uses the same context vector for every hidden

state of the decoder, the attention mechanism calculates a new vector ct for the output

word yt at the decoding step t. It can be defined as:

3.1. Neural Networks 33

attention

h3 = tanh(Wx2 + Uh2 + b)

h2h1

embedding x1 embedding x2 embedding x3

x1 x2 x3

softmax softmax softmax

o1 o2 o3

s1 s2 s3

Figure 3.8: Attention-based sequence-to-sequence model for three time steps. The red
arrows depict the connection of the intermediate vector c with the state units of the de-
coder.

ct =
T∑
j=1

atjhj (3.29)

where hj is the hidden state of the word xj , and atj is the weight of hj for predicting

yt. This vector is also called attention vector wish is generally calculated with a softmax

function:

αij =
exp(eij)∑T
k=1 exp(eik)

(3.30)

eij = attentionScore(si−1, hj) (3.31)

where the attentionScore, as an arbitrary function in the calculation, which scores

the quality of alignment between input j and output i. It is parameterized as a feed-

forward neural network in the original paper [26]. This vector is then normalized into

the actual attention vector by usng a softmax function over the scores:

αt = softmax(attentionScore)t (3.32)

This attention vector is then used to weight the encoded representation of the hid-

den state hj . Having said that in addition to this formulation, some others have been

proposed for attention, particularly in [24].

3.2. Evaluation metrics 34

3.2 Evaluation metrics

This section presents evaluation methods that would be used to evaluate the models.

Although various methods can be used to evaluate a machine translation system, in the

case of machine correction, evaluation may be limited to a binary classification of pre-

dictions where the matching elements are considered as true predictions and the others,

incorrect predictions. However, a good evaluation must include more details about this

comparison.

Example: Comparison of two error correction systems

Input: The burgening cherry trees are a signe that spring ishere.
Gold-standard: {burgening→ burgeoning, signe→ sign, ishere→ is here}
Hypothesis A: {burgening→ burning, a signe→ assigned}
Hypothesis B: {burgening→ burgeoning, signe→ sign, ishere.→is here., . → ∅ }

Example 3.2 illustrates a comparison between the results of two different correction

systems. For the given input phrase, two hypotheses are proposed by the two correction

systems: Hypothesis A yields, ”The burning cherry trees are assigned that spring ishere.”,

while hypothesis B produces the same expected phrase of the gold-standard annotation.

How would one evaluate the performance of these correction systems? The output

of system A and B includes respectively 9 and 12 tokens. How can we compare the

elements of the predicted and gold-standard phrases pairwise, while they have different

lengths? A further challenge arises when we have different edit actions that yield the

same output which is the case of correction system B. Finally, how can we distinguish

between two incorrect predictions and determine their quality? For instance, correction

system A predicts ”burning” as a correction for ”burgening”, which is not true, but its

prediction includes similar letters that indicate a better performance in comparison to a

completely non-related correction.

Over the years, a number of metrics have been proposed for error correction systems

evaluation, each motivated by weaknesses of previous metrics. There is no single best

evaluation metric and the performance of a metric depends on the research goals and

application [45]. Thus, we have evaluated our system based on the most popular metrics

to date.

3.2. Evaluation metrics 35

3.2.1 Standard metrics

In classification tasks, accuracy is one of the most used performance measures. This metric

corresponds to the ratio of correctly classified inputs to the total number of inputs. More

formally, accuracy can be defined as:

acc =
TP + TN

TP + TN + FP + FN
(3.33)

where TN (true negative) corresponds to the number of false inputs that were cor-

rect classified, TP (true positive) corresponds to the number of positive inputs that were

classified correctly, FN (false negative) corresponds to the number of positive samples in-

correctly classified as positive, and finally, FP (false positive) corresponds to the number

of negative inputs incorrectly classified as positive.

One drawback of this metric is that correction actions are completely ignored. Con-

sider correction system B in example 3.2 which yields the expected output but with dif-

ferent correction actions. Even if accuracy = 1 in this case, the performance of actions are

not reflected.

In order to take the correction actions into account, we define two additional perfor-

mance metrics, precision and recall. Given a set of N sentences, where Gi is the set of

gold-standard edits for sentence i, and Pi is the set of predicted edits for sentence i, we

define precision, recall and F-measure as follows:

precision =
TP

TP + FP
=

∑N
i=1 |Gi ∩ Pi|∑N

i=1 |Pi|
(3.34)

recall =
TP

TP + FN
=

∑N
i=1 |Gi ∩ Pi|∑N

i=1 |Gi|
(3.35)

where the intersection between Gi and Pi indicates the matches between the two sets.

A measure that combines precision and recall is the harmonic mean of them, also known

as Fβ −measure. It is defined as:

Fβ = (1 + β2).
precision× recall

β2 × precision+ recall
(3.36)

Depending on the usage, different values are attributed to β. The most common case

is in Fβ=1, also known as F-score, which weights recall and precision evenly. As the eval-

uation metric in our research, we have used F0.5, since it places twice as much emphasis

3.2. Evaluation metrics 36

on precision than recall, while F1 weighs precision and recall equally. This metric has

also been used in CoNLL-2014 shared task [46]. Our F0.5 is defined as follows:

F0.5 = (1 + 0.52).
precision× recall

0.52 × precision+ recall
(3.37)

To illustrate, consider correction system B in example 3.2. Based on our defined met-

rics, the performance of this correction is: P = 2/4, R = 2/3 and F0.5 = (1 + 0.52)× P ×

R/(0.52 × P +R) = 10/19. Although this correction system yields the expected phrase

of the gold-standard annotation in the output, these metrics still do not provide suffi-

cient information. Our correction system produces its predicted text for the given source

phrase, and we should provide correction actions to be compared with the gold-standard

annotations.

In the case of evaluation of machine correction systems, P , R and F0.5 do not provide

an indicator of improvement on the original text. Given this, we opt to use more ame-

liorated metrics such as MaxMatch (M2), I-measure, BLEU and GLEU, thus gaining better

insight into system performance. Each metric is explained in the following sections.

3.2.2 MaxMatch (M2)

Dahlmeier et al. [47] proposed a more accurate evaluation method, which is known as

MaxMatch(M2), for efficiently computing the sequence of phrase-level edits between a

source text and the predicted text. The main idea is to determine the set of edits that most

often matches the gold-standard. Thus, the algorithm yields the set of phrase-level edits

with the maximum overlap with the gold-standard. The edits are, then, scored using Fβ

measure.

3.2.2.1 Method

Given a set of source sentences S = {s1, ..., sn} with a set of gold-standard annotation

G = {g1, ..., gn}, our error correction system yields a set of predictions P = {p1, ..., pn}.

Each annotation gi contains a set of edits gi = {g1i , ..., gmi }. M2 method, in the first step,

extracts a set of system edits ei for each pair of (si, pi). Thus, an edit lattice structure is

constructed from a source-prediction pair. Then, the optimal sequence of edits is deter-

mined by solving a shortest path search through the lattice.

3.2. Evaluation metrics 37

Constructing edit lattice Assuming that we have tokenized sentence i in the source of

sentences S as si = {s1i , ..., sri } for which its relevant prediction is pi = {p1i , ..., pri }. We

start by calculating the Levenshtein distance in pair (si, hi). In the resulting edit distance

matrix, the last element represents the edit distance value for the two sets. By determin-

ing the shortest paths from the first element of the matrix([0,0]) to the last element, we

can construct a lattice structure in which each vertex corresponds to a cell in the matrix

and each edge to an atomic edit operations. Atomic edit operation in the Levenshtein

algorithm involves deleting a token, inserting a token, substituting a token or leaving a

token unchanged.

Example:

Input: the greater the Levenshtein distances , more different strings are .

Prediction: the greater the Levenshtein distances , the more different strings are .

G ={distances→ distance, more→ the more}

P ={more→ the more}

Example 3.2.2.1 presents a phrase in input and the prediction of the correction system.

Figure 3.9 indicates the Levenshtein distance matrix between the input and the predic-

tion. The shortest path that leads to the minimum edit distance in the bottom-right corner

of the matrix is identified by circles. Therefore, by applying a breadth-first search on the

matrix, we construct the corresponding lattice.

the greater the Levenshtein distances , the more different strings are .

0 1 2 3 4 5 6 7 8 9 10 11 12
the 1 0 1 2 3 4 5 6 7 8 9 10 11
greater 2 1 0 1 2 3 4 5 6 7 8 9 10
the 3 2 1 0 1 2 3 4 5 6 7 8 9
Levenshtein 4 3 2 1 0 1 2 3 4 5 6 7 8
distances 5 4 3 2 1 0 1 2 3 4 5 6 7
, 6 5 4 3 2 1 0 1 2 3 4 5 6
more 7 6 5 4 3 2 1 1 1 2 3 4 5
different 8 7 6 5 4 3 2 2 2 1 2 3 4
strings 9 8 7 6 5 4 3 3 3 2 1 2 3
are 10 9 8 7 6 5 4 4 4 3 2 1 2
. 11 10 9 8 7 6 5 5 5 4 3 2 1

Figure 3.9: Levenshtein edit distance matrix for the input and the prediction in example
3.2.2.1

Figure 3.10 illustrates the corresponding edit lattice of matrix 3.9. Each edge is weighted

by the sum of the costs of its parts. Each unique part has a unit cost. The goal is to de-

termine the sequence of edits in the lattice structure that has the maximum overlap with

3.2. Evaluation metrics 38

the gold-standard annotation. To accomplish this, we change the cost of those edges that

have an equivalent match to the gold-standard to −(u + 1) × |E|, e.g. the edge between

6,6 and 7,8. Parameter u is defined as a threshold to avoid a substantially large number

of unchanged edits. Transitive edits are allowed in the range of this threshold which is

set to 2 in this lattice.

0,0 1,1 2,2 3,3 4,4

5,5

6,6

6,7

7,8

8,99,1010,1111,12

the (1) greater (1) the (1) Levenshtein (1)

distances (1)

, (1)

∅/the (1)

more (1)

different (1)

strings (1)are (1). (1)

distance, / distance, the (3)

, / , the (2)

more / the more (-48)

more different / the more different (3)

Figure 3.10: Edit lattice of matrix 3.9. Transitive edits are weighted by the sum of the
consisting parts.

By performing a shortest path algorithm on the lattice, e.g. using Bellman-Ford algo-

rithm, we obtain the shortest path in the lattice (a single-source problem with negative

edges). Dahlmeier et al. [47] proved that the edits with the maximum overlap with the

gold-standard edits are those of the shortest-path.

Back to our example, theM2 Scorer evaluates the correction system with Precision =

0.5000, Recall = 0.5000 and F0.5 = 0.5000 which seems to be justifiable since the cor-

rection system has predicted only one correction that exists also in the gold-standard

corrections.

Although M2 Scorer is currently a standard metric in evaluating error correction sys-

tems, having been used to rank error correction systems in the 2013 and 2014 CoNLL

[48, 46] and EMNLP 2014 [49] shared tasks, it also has some weak points. In experiment-

ing with the baseline system, since there is theoretically no correction to be done, the

results of M2 Scorer appear to be non-interpretable (P = 100%, R = 0, F0.5 = 0). On the

other hand, partial edits are also ignored. Although the system prediction P ={more→

the more} includes a part of the gold-standard annotation, if assumed as the only pre-

3.2. Evaluation metrics 39

dicted edit by the correction system, it is evaluated with no difference with a completely

incorrect prediction (P = 0, R = 0, F0.5 = 0). These limitations have been the motivation

to present the standard evaluation method for error correction systems that we discuss

in the following section.

3.2.3 I-measure

I-measure is a novel method in response to the limitations of the previous methods, par-

ticularly theM2 Scorer [50]. UnlikeM2 Scorer that uses phrase-level edits, I-measure uses

tokens as the unit of evaluation. It also provides scores for both detection and correction

tasks and it is sensitive to different types of edit corrections. I-measure designs a new

evaluation system by presenting a new format for the gold-standard annotations. Then,

by determining an optimal alignment between an input, a prediction and a gold-standard

annotation, it computes the metrics that evaluates the performance of the correction sys-

tem.

S And we keep track of all family members

health conditions .

A 2 2|||Vm|||can|||REQUIRED|||-NONE-|||0

A 8 8|||Mec|||’|||REQUIRED|||-NONE-|||0

A 9 10|||Rloc-||||||REQUIRED|||-NONE-|||0

1 <?xml version=’1.0’ encoding=’UTF-8’?>

2 <scripts>

3 <script id="1">

4 <sentence id="1" numann="1">

5 <text>

6 And we keep track of all family

members health conditions .

7 </text>

8 <error-list>

9 <error id="1" req="yes" type="Vm">

10 <alt ann="0">

11 <c end="2" start="2">can</c>

12 </alt>

13 </error>

14 <error id="2" req="yes" type="Mec">

15 <alt ann="0">

16 <c end="8" start="8">’</c>

17 </alt>

18 </error>

19 <error id="3" req="yes" type="Rloc-">

20 <alt ann="0">

21 <c end="10" start="9" />

22 </alt>

23 </error>

24 </error-list>

25 </sentence>

26 </script>

27 </scripts>

Figure 3.11: An example of conversion of the gold-standard m2 format to the annotation
scheme of I-measure

3.2. Evaluation metrics 40

3.2.3.1 Method

In the first step, I-measure defines a new scheme for the gold-standard annotations where

each sentence is annotated with a set of errors and their possible corrections. Figure

3.2.3 illustrates the equivalent scheme of a gold-standard annotation example from the

CoNLL 2014 Shared Task corpus. Each error is detected based on the location. Since all

the correction alternatives are mutually exclusive, different mixture of corrections from

different annotators lead to a better estimation of the evaluation.

Using dynamic programming implementation of the Sum of Pairs alignment, a glob-

ally optimal alignment between the source sentence, the predicted output and the gold-

standard annotation is created. Sum of Pairs method is a common method in Bioinfor-

matics that scores a multiple sequence alignment by summing the scores of each pairwise

alignment. These scores are based on of three constrains in error correction:

• cmatch: cost of matches

• cgap > cmatch: cost of insertions and deletions

• cmismatch > cgap: cost of substations

• 2cgap > cmismatch: to ensure that the desired alignment has a lower cost than a initial

alignment

Once the optimal alignment found, the evaluation is calculated using an extended

version of the Writer-Annotator-System (WAS) introduced in [45] and is shown in Table

3.1. In this table, a, b and c are used to indicate the agreements, e.g., if the source, the

hypothesis and the gold-standard annotation are token a, a is a true-negative detection

and correction. The cases where Source 6= Hypothesis 6= Gold − standard belong to

false-positive and false negative classes. These cases are specific by FPN class.

Traditionally, NLP-related systems are evaluated using a 2×2 contingency table that

provides a comparison between system outputs and the gold-standard annotations. Con-

sidering the input text in the evaluation, the WAS table is an alternative to represent the

2× 2× 2 possible combinations in correction system evaluation.

Finally, evaluation metrics are calculated using precision, recall and F − measure,

defined in section 3.2.1. In order to reward correction more than preservation (i.e., ”doing

nothing”), a weighted version of accuracy is also defined:

WAcc =
w.TP + TN

w.(TF + FP) + TN + FN − (w + 1).FPN2
(3.38)

3.2. Evaluation metrics 41

Tokens Classification

Source Hypothesis Gold-standard Detection Correction
a a a TN TN
a a b FN FN
a a - FN FN
a b a FP FP
a b b TP TP
a b c TP FP, FN, FPN
a b - TP FP, FN, FPN
a - a FP FP
a - b TP FP, FN, FPN
a - - TP TP
- a a TP TP
- a b TP FP, FN, FPN
- a - FP FP
- - a FN FN

Table 3.1: Extended Writer-Annotator-System evaluation system

where w > 1.

3.2.4 BLEU and GLEU

One of the most widely used automatic evaluation metrics is BLEU score [51]. It is com-

puted as the geometric mean of the modified n-gram precision, multiplied by a brevity

penalty, ρ, to control for recall by penalizing short translations:

BLEU = ρ(
N∏
i=1

precisioni)
1
N (3.39)

where n is the n-gram order that is most often 4, and precisioni and ρ are calculated

as follow:

Precisioni =

∑
ti
min{Ch(ti),maxjChj(ti)}

H(i)
(3.40) ρ = exp{min(0, n− L

n
)} (3.41)

where H(i) is the number of i-gram tuples in the hypothesis, ti is an i-gram tuple

in hypothesis h, Ch(ti) is the number of times ti occurs in the hypothesis and Chj(ti) is

the number of times ti occurs in the gold-standard annotation j of this hypothesis. In

calculating brevity penalty ρ, n refers to the length of the hypothesis and L refers to the

length of the gold-standard annotation.

Recently, Napoles et al. ameliorated BLEU metric for evaluation of grammatical er-

ror correction systems and proposed the Generalized Language Evaluation Understanding

(GLEU) [52, 53]. Similar to the I-measure metric, the precision calculation is modified

to assign extra weight to n-grams that are present in the gold-standard annotation and

3.2. Evaluation metrics 42

the system prediction, but not those of the input (set of n-grams R\S), and it also penal-

izes the grams in the candidates that are present in the source but not the gold-standard

annotation (S\R). This metric is defined as:

pn
′ =

∑
n−gram∈C countR\S(n− gram)− λ(countS\R(n− gram)) + countR(n− gram)∑

n−gram∈C countS(n− gram) +
∑

ngram∈R\S countR\S(n− gram)

(3.42)

where λ refers to the rate of penalty for incorrectly changed ngrams, and function

count is calculated for a set of n-grams B as:

countB(n− gram) =
∑

n−gram′∈B
d(n− gram, n− gram′) (3.43)

where d(n− gram, ngram′) has a unit value in the case that n− gram and n− gram′

are equal. Using these parameters, GLEU(C,R,S) score for a candidate C for input S and

reference R is defined as:

BP =

 1 c > r

e(1−c)/r c ≤ r
(3.44)

GLEU(C,R, S) = BP.exp(

N∑
n=1

wnlogpn
′) (3.45)

Since the task of evaluation in machine correction systems is limited to a compara-

tive method between the prediction results and the gold-standard annotations, some of

the evaluation measures in machine translation systems, e.g., manual evaluation for ad-

equacy and fluency, does not appear to be pertinent in the case of machine correction

systems. Results are reported in section 6 using these metrics.

CHAPTER 4

Experimental Setup

This chapter discusses the experimental procedure used to create our error correction

system. First, in section 4.1, we present our task and the pipeline the we followed in de-

veloping the project. Section 4.2 introduces the QALB corpus used for our experiments.

In this section, the corpus is preprocessed and different details are analyzed. Finally,

section 4.3 contains the technical details for the implementation of the project.

4.1 Task

Conceptually, the task of creating our error correction system can be classified in three

modules:

1. Modeling: Given a parallel corpus of potentially incorrect words versus their cor-

rected forms, we define a model by defining the representation of data and the

approach of the correction.

2. Training: In order to estimate parameters θ that most most suite to the corpus, we

need to train a method on the training data.

3. Searching: In this last step, we solve the selection mechanism argmax by searching

for the hypothesis with the highest probability.

43

4.2. The QALB corpus 44

Although these three models are practically addressed in chapter 5, this chapter cov-

ers a partial description regarding the QALB corpus that is used in the training and eval-

uating of the models.

4.2 The QALB corpus

Qatar Arabic Language Bank (QALB)1 is created as a part of a collaborative project be-

tween Columbia University and the Carnegie Mellon University Qatar, funded by the

Qatar National Research Fund. In our research, we used the release of QALB at ANLP-

ACL 2015 which includes data sets of native and non-native (L2 data sets) Arabic speak-

ers. [54, 55].

QALB corpus is provided in three subsets: training, development and test, for which

(*.train.*), (*.dev.*) and (*.test.*) are respectively used as the file extension. This is not

the case for the non-native corpus(L2) where the training and development sets are only

provided. To evaluate different models on the development data, QALB corpus comes

with some evaluation scripts that may be useful to evaluate the performance of different

models. However, we have not used them in this project.

Three versions of the data are included in the corpus: *.m2 is the format accepted

by the scorer for evaluation including the gold annotations, *.sent includes plain docu-

ments with identifiers, and finally *.column provides the feature files in column format

generated using [56].

The QALB corpus is composed of machine translation texts, human user comments,

weblog contents, student essays and non-native essays. Their goal in the annotation is to

correct all the errors by maintaining the minimum edit actions. Corrected errors in the

QALB corpus can be classified in the following six classes:

1. Spelling errors: common typographical errors

2. Punctuation errors

3. Lexical errors: inadequate lexicon

4. Morphological errors: incorrect derivation or inflection

5. Syntactic errors: grammatical errors, e.g., agreement of gender, number, definite-

ness
1http://nlp.qatar.cmu.edu/qalb/

http://nlp.qatar.cmu.edu/qalb/

4.2. The QALB corpus 45

6. Dialectal errors: specific words are detected as incorrect if not present in the Al-

maany reference dictionary 2.

4.2.1 QALB corpus structure

Using the annotation style of the CoNLL-2013 shared task in [48], the QALB corpus is

consists of blocks of annotated phrases. In each block, the first line starting by ’S’ is a

document token that may encompass a single sentence or a paragraph of different sen-

tences. Following the sentence line, the corrected form of each token appears in lines

starting by ’A’. In each line containing a correction, three different pieces of information

are important to create our data set:

1. location of each token represented by beginning− ending identifiers (indexed from

0). This location refers to the spaces between each token

2. correction type needed to correct a given token

3. the corrected form of the token

Each block is separated by an empty line.

Figure 4.1: An example of the correction process based on the structure of the QALB
corpus. S and A refer respectively to the beginning of the sentence and the gold annota-
tors’ correction

Figure 4.1 demonstrates a correction annotation based on the QALB corpus for a

dummy writer’s text. In this example, the phrase is started by S and then the correc-

tion annotations are followed in A lines. The first correction concerning the token that

starts from location 0 to location 1, i.e. Tihs, is to be corrected to This by an Edit action.

The token in location 2 to 3 needs a Split action to be corrected as is meant instead of

ismeant. Following all the A lines, these annotations yield the correct phrase ”This text

2http://www.almaany.com/

http://www.almaany.com/

4.2. The QALB corpus 46

is meant to be in Arabic but, it is not.”. Locations are detectable based on the space charac-

ters in the phrases, which are enumerated in red in this example. The last index A lines,

i.e., |||0, indicate the number of annotators. This may influence the evaluation results de-

pending on the metric. However, for the current version of the QALB corpus, we could

not find more than one annotator. An example of the QALB corpus can be found in A.2.

If we consider each action as a function ∀xi, xi+nCorrect(xi, xi+n), we can define the

correction actions in the QALB corpus as follows:

• Add before: insert a token in front of another token (n = 0).

• Merge: merge multiple tokens (n ≥ 2). The maximum value that we observed for

this action was 4.

• Split: split a token into multiple tokens (n = 1).

• Delete: delete a token (action = ”” and n = 1).

• Edit: replace a token with a different token (n = 1).

• Move: move a token to a different location in the sentence (n ≥ 2). The maximum

value that we observed for this action was 7.

• Add after: insert a token after another token. This action is always accompanied by

a Delete action (n = 0).

• Other: a complex action that may involve multiple tokens (n ≥ 1). The maximum

value that we observed for this action was 6.

Whole corpus Corretion annotations

OK(no correction)

Correction actions

Merge

Move(0.13%), Delete(2.2%), Add after(0.006%), Other(0.05%)

Edit

Add before

Split

73%

27%

55.34%

2.86%

32.35%

5.9%
3.47%

Figure 4.2: Actions used by annotators for correction in the QALB corpus

Figure 4.2 shows the pie charts of the correction actions proportionally. The 73% of

the tokens in the QALB corpus that are not annotated are considered correct, i.e., action =

4.2. The QALB corpus 47

OK. The proportion of each action is as follows: Edit: 169 769, Move: 427, Add before:

99258, Merge: 18267, Delete: 6778, Split: 10675, Other: 1563 and Add after: 20, which

are illustrated in the pie chart on the right.

4.2.2 Creating data sets

Based on the level of modeling, we need to manipulate the corpus in order to extract

the needed data. For instance, we can create our data set based on three pieces of infor-

mation: original tokens (S line), corrected tokens and the correction actions (both in A

line). With reference to the example in figure 4.2, the structure of the data set of this block

will be:

1 [

2 [[” Tihs ” , ” This ” , ” Edit ”] ,

3 [” t e x t ” , ” t e x t ” , ”OK”] ,

4 [” ismeant ” , ” i s meant” , ” S p l i t ”] ,

5 [” tu ” , ” to ” , ” Edit ”] ,

6 [” in ” , ” in ” , ”OK”] ,

7 [”Ara b i c ” , ” Arabic ” , ”Merge”] ,

8 [” but ” , ” but ” , ”OK”] ,

9 [”” , ” , ” , ” Add before ”] ,

10 [” i s i t ” , ” i t i s ” , ”Move”] ,

11 [”” , ” . ” , ” Add after ”] ,

12 [” : ” , ”” , ” Delete ”]]

13]

Listing 4.1: Processing the annotation block of figure 4.2

One of the challenges was the case of having more than one action for a given token.

This amounts to 701 tokens requiring 306 757 correction actions. Thus, for juxtaposing

actions to the tokens, in the case of a 1 → 1 juxtaposition between an annotation and

a token, each action would be assigned as the correction action of the token. However,

if more than one correction action is available for a given token, we concatenate all the

actions into one action. Since we have not found two different actions for a single token

in the current version of QALB, we simply concatenate the corrections keeping the same

action.

After analyzing different aspects of the corpus, we created different data sets to train

our models. The corpus has a density of 15.80 errors/block and it has 115 characters

(including space) from all 1 022 126 tokens in the corpus. We have also considered <

4.3. Technical details 48

EOS > as a specific character with which to end each string. The role of this character is

explained in the next chapter. Figure 4.3 indicates all the 115 extracted characters of the

QALB corpus. It seems that > and & are not pre-processed to be converted to &

and > respectively.

 = ؛6 9 [] ١ ـ 8 1 0 5 ج ، ؟) ظ آ , : " (7 ك د أ ن ح ب و س ؤ ة ث ه ف ء ص ش . ! ذ خ ط ض ئ غ ز 2ا ل ى إ ت ع ي ق ر م
٨ * ٩ ٧ ? { } ٢ _ ٦ / ٣ ٤ - ^ ی ک 3 % 4 ٥ ٠ & a m p ; g t \ $ ` ٱ ~ | گ ٪ @ l # ’ پ۹ ۆ ڕ ‘ + ۱ګګ ڤ

Figure 4.3: Existing characters in the QALB corpus, each one separated by a space

One of the important points that will emerge further during the evaluation process, is

when the system yields a correction phrase with a different size from that of the source.

The remarkable difference between 98577 empty strings among the original tokens and

6778 empty tokens among the corrected tokens, indicates the variable size of the source/-

target texts.

4.2.3 Refining data sets

Although the curse of dimensionality does not hit the character-level models in general,

due to the limited number of existing characters in a corpus, it can create serious prob-

lems for the word-level models, both in performance and processing.

We have refined the data sets to obtain a more optimized model. In this technique,

we refine the parameters of the model based on the frequency of the data. This technique

is more usable when the model is trained in a word-level in which multiple matrices in

large dimensions e.g., 106 × 102 are presented.

Among the entire tokens in the corpus, 146610 are unique tokens, which equate to

14.18%. A total of 789 different frequencies in the non-sequential range of [1, 99808]

exist. The frequency of the words with 1 to 14 occurrences in the corpus comprises 91%

of the words. Thus, the remaining tokens have more than 14 occurrences. Figure 4.4

summarizes the frequency of the words in the QALB corpus.

4.3 Technical details

In this project, we implemented our models in the Python version of DyNet 3. The Dy-

namic Neural Network Toolkit, or DyNet [57], is a neural network library suited to net-

3It is released open-source and available at https://github.com/clab/dynet.

https://github.com/clab/dynet

4.3. Technical details 49

1 2 3 4 5 6 7 8 9-14 15+
0

10,000

20,000

30,000

40,000

50,000

Frequency

N
um

be
r

of
w

or
ds

Figure 4.4: Number of words based on frequency in the QALB corpus

works that have dynamic structures. DyNet supports both static and dynamic declara-

tion strategies used in neural networks computations. In the dynamic declaration, each

network is built by using a directed and acyclic computation graph that is composed of

expressions and parameters that define the model.

Working efficiently on CPU or GPU, DyNet has powered a number of NLP research

papers and projects recently.

CHAPTER 5

Correction models

This chapter will describe how experiments were implemented within this research and

what parameters were used in order to carry them out. We also present the training de-

tails of our models for the task of error correction. Results of these models are evaluated

in chapter 6.

5.1 Sentence Representation

The first step in creating a model, is to choose a representation for the input and output.

For instance, a sentence can be represented in word-level, which is transferring the data

with indices that refer to the words. However, in this work, we anticipate the need to

handle an exponentially large input space of tokens by choosing a character-level sen-

tence representation. Thus, model inputs are individual characters which are a sequence

of indices corresponding characters. We have defined a specific character < EOS > in

order to specify the end of each sentence. This character will be later used in the train-

ing process as a criteria. Note that in the character-level representation, we have also

considered space as a unique character, i.e. 116 unique characters in all 4.3.

Once a sentence is mapped into indices, the characters are embedded [58], i.e. each

character is represented by a one-hot vector and is multiplied by a trainable matrix with

the size of the input × embeddings size. The embedding allows the model to

50

5.2. Models 51

group together characters that are similar for the task. These embeddings are fed into the

models.

5.2 Models

Previously in chapter 3, we reviewed a background of the models that we’re using in

this research. In this section, we present the technical points of the models that we have

used. Having said that we explored different hyper-parameters, here we present those

for which the experiments are done.

5.2.1 RNN model

The first model that we examined is an RNN as the simplest architecture. By passing

the embedding of the input sentence as the input of the network, the corrected form of

the input is provided as the output of each state of the network. We use softmax layer

to produce probability distribution over output alphabet at each time step. Figure 5.1

illustrates this process.

softmax softmax softmax

o1 o2 o3

x1 x2 x3

h1 h2 h3

embedding1 embedding2 embedding3

Figure 5.1: A recurrent neural network for error correction. The input is a potentially
erroneous sequence. The output of the model is supposed to be the corrected form of
the input. Note the fix size of the input and output sequence.

The hyper-parameters of the network are:

• Architecture: LSTM

• Number of layers: 2

• Cells in each layer: 80

5.2. Models 52

• Number of embeddings: 50

• Parameters initialization: [-0.1, 0.1]

• Number of epochs: 20

• Learning rate: Default value of SimpleSGDTrainer in DyNet, i.e., ηt = η0
1+ηdecayt

at epoch t.

We train the model by minimizing the negative log likelihood of the training data

using stochastic gradient. The codes of the error calculation fo each model is available in

the appendix A.3.

5.2.2 BRNN model

The structure of our BRNN model is exactly the same with the RNN model. The only

difference is that an bidirectional RNN consists of two unidirectional RNNs, one reading

the inputs in forward direction and the other in backward direction. So, a sum of forward

and backward RNN outputs is the output of bidirectional RNN. The hyper-parameters

of our model is the following:

• Architecture: LSTM

• Number of layers: 4

• Cells in each layer: 90

• Number of embeddings: 50

• Parameters initialization: [-0.1, 0.1]

• Number of epochs: 20

• Learning rate: Default value of SimpleSGDTrainer in DyNet, i.e., ηt = η0
1+ηdecayt

at epoch t.

BRNN in addition to the previous observations, can also take next observations into

account. This enables it to be more efficient in dealing with all kinds of errors.

5.2.3 Encoder-decoder model

Using two RNN models, we created an encoder-decoder model with the following hyper-

parameters:

• Architecture: LSTM

• Number of encoder layers: 4

5.3. Output generation 53

• Number of decoder layers: 4

• Cells in each layer of the encoder: 100

• Cells in each layer of the decoder: 100

• Number of embeddings: 50

• Parameters initialization: [-0.1, 0.1]

• Number of epochs: 10

• Learning rate: Default value of SimpleSGDTrainer in DyNet, i.e., ηt = η0
1+ηdecayt

at epoch t.

5.2.4 Attention-based encoder-decoder

We added an attention mechanism between the encoder and the decoder model. This

mechanism helps the decoder to pick only the encoded inputs that are important for each

step of the decoding process. Once we calculate the importance of each encoded vector,

we normalize the vectors using softmax and multiply each encoded vector by its weight

to obtain a ”time dependent” input encoding which is fed to each step of the decoder

RNN. The only difference of this model with the encoder-decoder model in terms of

hyper-parameters, is the number of epochs. We trained the model in 7 epochs.

5.3 Output generation

For an error correction system, sentences with spelling or grammatical errors should have

lower probability than their corrected versions, since they are less present in the whole

corpus. Based on this assumption, as we explained in the description of the models,

an output is the most probable element in the softmax probability distribution (demon-

strated in algorithm 1). Although, this is not the only approach to generate an output.

Dahlmeier and Ng [59] developed a beam-search decoder to iteratively generate sentence-

level candidates and ranking them.

In the case of encoder-decoder and attention-based encoder-decoder, since the output

size can be variant, we have used two different conditions. Algorithm 2 shows the gen-

eration algorithm in an encoder-decoder model or an attention-based encoder-decoder

model:

5.3. Output generation 54

Algorithm 1 Correction of an input sequence using a character-level model(RNN or
BRNN)

Input: Input sequence C ← c1, c2, ..., cN
Output: Corrected sequence O ← o1, o2, ..., oN

1: procedure GENERATEOUTPUT(C)
2: embeddedInput← embedSequence(C)
3: modelOutputs← runModel(embeddedInput)
4: p0, p1, ..., pN ← getProbabilities(modelOutputs)
5: index← 0
6: while i < N do
7: predictedIndex← argmax(pi)
8: oi ← indexToCharacter(predictedIndex)
9: i← i+ 1

return O

Algorithm 2 Correction of an input sequence using a character-level model(encoder-
decoder or attention-based encoder-decoder)

Input: Input sequence C ← c1, c2, ..., cN
Output: Corrected sequence O ← o1, o2, ..., oM

1: procedure GENERATEOUTPUT(C)
2: embeddedInput← embedSequence(C)
3: modelOutputs← runModel(embeddedInput)
4: p0, p1, ..., pN ← getProbabilities(modelOutputs)
5: index← 0
6: MaxSize← N × 2
7: while i < MaxSize do
8: predictedIndex← argmax(pi)
9: oi ← indexToCharacter(predictedIndex)

10: i← i+ 1
11: if oi = ” < EOS > ” then
12: break

return O

CHAPTER 6

Experiments and Results

In the previous chapter, we presented four models for the task of error correction. The

details of the models were explained. In this chapter, the results obtained from the models

are discussed. First we analyze the data set and the error rate of the gold-standard corpus.

The evaluation metrics are then applied on the results of the models. As we explained

in section 6, using different metrics can reflect a better interpretation of the evaluation of

the results.

6.1 Data

A sequence in input or output of a error correction system can be represented in different

levels. In character-level, a sequence is processed character by character. When searching

for errors, humans often consider a bigger sequence of characters at word-level. Clause-

level, phrase-level, sentence-level and text-level are other common representations for

modeling sequences.

In our research, we worked at character-level where each character in an input se-

quence is mapped to an real-valued number and then it is embedded. In order to model

linguistic dependencies in each sequence, we took every character into account, includ-

ing space. This enables us to deal with different kinds of errors and a larger range of

characters in each sequence. On the other hand, the output of the models are also at

55

6.2. Baseline system 56

character level. We will later see that the fact that we train the methods using the whole

sentence size reduces the accuracy of the models remarkably.

#sentences #words #characters Corrected tokens
train set 19411 1041537 10231305 29.45%
validation set 1017 54880 537182 30.35%
test set 968 52290 510582 31.32%

Table 6.1: Train, validation and test set of the QALB corpus.

Three data sets are provided in the QALB corpus:

• Train set is used to build up our prediction model. Our algorithm tries to tune itself

to find optimal parameters with the back-propagation. This set is usually used

to create multiple algorithms in order to compare their performances during the

validation phase.

• Validation set is used to compare the performances of the prediction parameters

created based on the training set. We select the parameters that has the best perfor-

mance.

• Test set is a set of examples used only to assess the performance of a fully-trained

classifier. In the RNN case, we would use the test set to estimate the error rate after

we have chosen the final model.

Table 6.1 summarizes each data set in details. We used these data sets with the given

sizes.

6.2 Baseline system

We define the pair of source sentences and the gold-standard annotations as the baseline

of the models. In this baseline, we assume that non of our implemented models intervene

in the task of correction and only references are considered as correction. Simply saying,

Baseline system is the system that makes no corrections on the input text. The baseline

enables us to interpret the performance of each model in comparison to the default re-

sults.

6.3. Results of the models 57

6.3 Results of the models

This section presents evaluation results of the models using the metrics that we intro-

duced in section 3.2. Since each of these metrics reflect a different aspect of evaluation

of each model, comparing them together enables us to obtain a better description of the

performance of the models.

6.3.1 MaxMatch M2

As explained in detail in section 3.2.2, the MaxMatch M2 metric computes the sequence

of phrase-level edits between the source text and the predicted text in a way that it max-

imizes their overlap. The edits are then scored using precision P , recall R and F-score

F0.5.

Model
M2 scorer
P R F0.5

Baseline 1.0000 0.0000 0.0000
RNN 0.5397 0.2487 0.4373
BiRNN 0.5544 0.2943 0.4711
Encoder-decoder 0.5835 0.3249 0.5034
Attention 0.5132 0.2132 0.4155

Table 6.2: Evaluation results of the models using MaxMatch M2 metric. Bold numbers
indicate the best method per measure.

Table 6.2 demonstrates the results of the models using MaxMatch M2 metric. In the

baseline system, the metric detects complete precision of the system. This is because in

the baseline system the gold-standard annotations are directly applied as the hypothesis

of a model. So, we can justify the zero value of the recall and the F0.5 consequently.

However, these scores are not as high as the baseline system for other models.

We set the value of the transitive edits in the range of 2 for calculating the correspond-

ing lattice of each edit. We set also the value of β = 2 in calculating the F-score.

In addition to the m2 format of the gold-standard annotations which is specifically

used for MaxMatch M2 metric, the reference correction of the QALB corpus is provided

also in raw text with .sent format. Thus, we could evaluate the models without taking

any possible preprocessing noises into account. For instance, evaluating the baseline

model, we could have the following resultsP = 0.0179, R = 0.0004, F0.5 = 0.0017. Even if

these values are not remarkably different from those of the reference correction, it indicate

6.3. Results of the models 58

probable mismatching during the preprocessing of the .m2 files of the corpus.

We have used the original implementation of the MaxMatch M2 introduced in [47]. 1.

6.3.2 I-measure

I-measure metric is a method in response to the limitations of the MaxMatch M2 met-

ric. As we explained in section 3.2.3, the I-measure determines an optimal alignment

between an input, a hypothesis and a gold-standard text. In addition to the standard

metrics introduced in section 6, in this metric an Improvement (I) score is computed by

comparing system performance with that of the baseline which leaves the original text

uncorrected. Table 6.3 demonstrates the evaluation results of the trained models using

I-measure metric.

Baseline RNN BRNN Encoder-decoder Attention
Detection Correction Detection Correction Detection Correction Detection Correction Detection Correction

TP 0 0 11286 208 11800 223 12213 247 11557 201
TN 39589 39589 20881 20881 20378 20378 22204 22204 21070 21070
FP 0 0 18730 29808 19220 30797 17410 29376 18533 29889
FN 98318 98318 87031 98109 86518 98095 86111 98077 86758 98114
FPN 0 0 0 11078 0 11577 0 11966 0 11356
P 100.00 100.00 37.60 0.69 38.04 0.72 41.23 0.83 38.41 0.67
R 0.00 0.00 11.48 0.21 12.00 0.23 12.42 0.25 11.76 0.20
F0.5 0.00 0.00 25.84 0.48 26.53 0.50 28.16 0.57 26.43 0.46
Acc 28.71 28.71 23.32 15.29 23.33 14.94 24.95 16.28 23.66 15.42
Accb 28.71 28.71 28.71 28.71 28.71 28.71 28.71 28.71 28.71 28.71
WAcc 28.71 28.71 25.87 13.11 26.03 12.76 27.83 14.05 26.30 13.23
WAccb 28.71 28.71 28.71 28.71 28.71 28.71 28.71 28.71 28.71 28.71
I 0.00 0.00 -9.87 -54.32 -9.32 -55.54 -3.06 -51.07 -8.39 -53.92

Table 6.3: Evaluation of the models using I-measure metric

The I-measure evaluates a prediction in terms detection and correction. However,

we are interested only in the correction results, the detection results can also be infor-

mative about the quality of correction of a model. Similar to the evaluation results of

the MaxMatch M2 metric in table 6.2, the baseline systems is completely precise in terms

of correction, i.e., F0.5 = 0.00, P = 100.00. On the other hand, other models could not

obtain competitive results. This is mainly because of the poor alignment between the

source text, the hypothesis and the reference. In comparison to other models, the encoder-

decoder demonstrates better performance with an Improvement score of I = −51.07 and

a weighted accuracy of WAcc = 14.05. The weighted version of accuracy WAcc rewards

correction more than preservation.

1Available at http://nlp.comp.nus.edu.sg/software/

http://nlp.comp.nus.edu.sg/software/

6.3. Results of the models 59

We set the values of WAcc and F-β for this metric to 2 and 0.5 respectively. We used

the original implementation of the I-measure introduced in [50]. 2.

6.3.3 BLEU and GLEU

BLEU was one of the first automatic metrics used in measuring translation accuracy and

has became one of most common metrics in machine translation systems evaluation [51].

In addition to this metric, we also use GLEU which is a simple variant of BLEU showing a

better correlation with human judgments in the evaluation task [52]. The following table

shows the evaluation results of our correction models using BLEU and GLEU metrics.

Model BLEU score GLEU score

Baseline 1.000000 1.000000
RNN 0.349212 0.313035
BiRNN 0.305852 0.269368
Encoder-decoder 0.327858 0.292956
Attention 0.312947 0.287664

Table 6.4: Evaluation of the models using BLEU and GLEU metrics

As we expect, since the baseline system contains the gold-standard correction, the

BLEU and the GLEU scores for the baseline system have the maximum value 1.00. Using

metric, the RNN model shows higher scores in comparison to other models, i.e.,BLEU =

0.3492 and GLEU = 0.3130. Note that in the GLEU metric, the precision is modified to

assign extra weight to the n-grams that are present in the reference and the hypothesis,

but not those of the input.

We have used the last update of the original implementation of the GLEU [52] intro-

duced in [53]. 3.

2Available at https://github.com/mfelice/imeasure/
3Available at https://github.com/cnap/gec-ranking

https://github.com/mfelice/imeasure/
https://github.com/cnap/gec-ranking

CHAPTER 7

Conclusion and future work

Thus far, the results of each method are presented in depth. In this last chapter, these

results will be discussed in more detail based on the research aims. Furthermore, several

ideas about future works in this domain are proposed.

7.1 Limitations

A comparative example of a source text, its gold-standard correction and output of trained

model is illustrated in appendix A.2. We tagged manually four kinds of errors in differ-

ent colors: the green tags refer to the incorrect tokens in the input which are predicted

correctly by a trained model, the yellow tags are the incorrect input words, the orange

tags are the incorrectly predicted tokens of an incorrect input word and finally the cyan

tags show the incorrect prediction of a correct input token.

The purpose of using these tags is to demonstrate different kinds of correction and

the quality of correction by each model for the same symbol. For instance, the incorrect

form of ”لا زال” is corrected by none of the models as لازال” ”, while ”الشبيحه” is predicted

correctly by the RNN, BRNN and encoder-decoder models as الشبيحة” ”. Looking care-

fully at the distribution of incorrect prediction of correct input words (colored in cyan),

one can deduce that the models perform less sensibly when the size the sequence become

gradually bigger. To prove our observation, we tried to evaluate the models by limiting

60

7.2. Future studies 61

the sequences to a fixed size.

30 50 70 100
BLEU GLEU BLEU GLEU BLEU GLEU BLEU GLEU

Baseline 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RNN 0.575715 0.476466 0.579784 0.545291 0.556254 0.543040 0.519782 0.514380
BRNN 0.481971 0.397735 0.501957 0.469293 0.49238 0.480605 0.461176 0.455698
Encoder-decoder 0.471226 0.421491 0.488849 0.457512 0.479811 0.468159 0.456483 0.451533
Attention 0.506216 0.389947 0.507188 0.477017 0.490448 0.478636 0.457459 0.452876

Table 7.1: Evaluation of models using fixed-size sequences

Table 7.1 demonstrates the BLEU and GLEU scores for a limited size of sequences of

30, 50, 70 and 100 characters. In comparison to the results of the models in table 6.4, this

limitation shows considerably higher scores.

We could not do the same experiment using MaxMatch nor I-measure methods. Max-

Match M2 and I-measure need the gold-standard correction annotations for the evalua-

tion, while BLEU and GLEU evaluate the models using the gold-standard raw text, with-

out any specific information about the annotation.

7.2 Future studies

For the future studies, we have the following suggestions:

• Models to be explored in more levels, e.g., action-level, word-level and sentence-

level.

• Limiting the length of the sequences in training models.

• Using deeper networks with larger embedding size.

• Preventing over-learning of models by not training them over correct input tokens

(action =”OK”).

7.3 Conclusion

The basic problem that the attention mechanism solves is that instead of forcing the net-

work to encode all parameters into one fixed-length vector, it allows the network to take

use of the input sequence. In other words, the attention mechanism gives the network

7.3. Conclusion 62

access to the hidden state of the encoder which acts like an internal memory. Thus, the

network is able to retrieve from the memory the related parameters for the current input.

There is a tight relation between the attention mechanism and the memory mech-

anisms. For instance, the hidden state of a simple RNN by itself is a type of internal

memory. However, the RNNs suffer from the vanishing gradient problem that hinders

modeling long distance dependencies, which is a common phenomenon in human lan-

guage. On the other hand, LSTM uses a gating mechanism that provides an explicit

memory for deletions and updates.

Recently more researchers tend towards more complex memory structures. For in-

stance, End-to-End Memory Networks [60] allow the network to read multiple times an

input sequence in order to make an output and also to update the memory contents at

each step. These models are used in question answering [61] and to language modeling

successfully, since it is able to make multiple computational steps, also known as hop,

over an input story.

Future researches may reveal a clearer distinction between attention and memory

mechanisms. In the recent studies, reinforcement learning techniques have been also

used for error correction task [62, 63].

APPENDIX A

Appendix

A.1 Adam

Adaptive Moment Estimation (Adam) [64] is a stochastic optimization method that com-

putes learning rates for each parameter. In addition to storing an exponentially decaying

average of past squared gradients vt, Adam also maintains an exponentially decaying

average of past gradients mt. The step taken at each update is proportional to the ratio of

these two moments for which β1 and β2 are respectively used as the exponential decay

rates. We can define each parameter as follow:

gt = OHt(θt − 1) (A.1)

mt =
β1mt−1 + (1− β1)gt

1− β21
(A.2)

vt =
β2vt−1 + (1− β2)g2t

1− β22
(A.3)

θt = θt1 − α.
mt√
vt + ε

(A.4)

where ε is a very small number to prevent division by zero.

63

A.2. Annotation example from the QALB corpus 64

A.2 Annotation example from the QALB corpus

S كل ماءايجري من تخرايب وتفجيروقتل وسلب ونهب في هذه الايام تم العدادله من سابق من قبل القاعده
.الحمرايسسه القبليسسه لكسسي تسسثيرالفتن وهسسذاءمخطط علسسى وحاشسسيته مسسن اجسسل البقسساءفي اسسستعمارالجنوب .

واماءانصارالشرايعه هي تلك القوات اللتي دربة مسن قبسسل امرايكساءوهم مسن ايحسسول البلدالسى امسارات اسسلميه
.والمستفيدمن ذالك رائيس العربية اليمنية الشقيقه ثورة ثورة اياجنوب .
A 1 2|||Split|||ما ايجري|||REQUIRED|||-NONE-|||0
A 4 5|||Split|||وتفجير وقتل|||REQUIRED|||-NONE-|||0
A 9 10|||Edit|||الايام|||REQUIRED|||-NONE-|||0
A 11 12|||Split|||العداد له|||REQUIRED|||-NONE-|||0
A 13 14|||Edit|||السابق|||REQUIRED|||-NONE-|||0
A 16 17|||Edit|||القاعدة|||REQUIRED|||-NONE-|||0
A 17 18|||Edit|||الحمراية|||REQUIRED|||-NONE-|||0
A 18 19|||Edit|||القبلية|||REQUIRED|||-NONE-|||0
A 20 21|||Split|||تثير الفتن|||REQUIRED|||-NONE-|||0
A 22 23|||Split|||وهذا مخطط|||REQUIRED|||-NONE-|||0
A 24 25|||Edit|||وحشيته|||REQUIRED|||-NONE-|||0
A 26 27|||Edit|||أجل|||REQUIRED|||-NONE-|||0
A 27 28|||Split|||البقاء في|||REQUIRED|||-NONE-|||0
A 28 29|||Split|||استعمار الجنوب|||REQUIRED|||-NONE-|||0
A 30 31|||Other|||وأما أنصار الشرايعة|||REQUIRED|||-NONE-|||0
A 34 35|||Edit|||التي|||REQUIRED|||-NONE-|||0
A 35 36|||Edit|||دربتها|||REQUIRED|||-NONE-|||0
A 36 39|||Move|||أمرايكا من قبل ،|||REQUIRED|||-NONE-|||0
A 38 39|||Move|||وهم|||REQUIRED|||-NONE-|||0
A 41 42|||Split|||البلد إلى|||REQUIRED|||-NONE-|||0
A 42 43|||Edit|||إمارات|||REQUIRED|||-NONE-|||0
A 43 44|||Edit|||إسلمية|||REQUIRED|||-NONE-|||0
A 44 45|||Split|||والمستفيد من|||REQUIRED|||-NONE-|||0
A 45 46|||Edit|||ذلك|||REQUIRED|||-NONE-|||0
A 46 47|||Edit|||رئيس|||REQUIRED|||-NONE-|||0
A 49 50|||Edit|||الشقيقة|||REQUIRED|||-NONE-|||0
A 53 54|||Split|||ايا جنوب|||REQUIRED|||-NONE-|||0

Figure A.1: An annotation example from the QALB corpus. Following line S which
refers to the potentially wrong original text, the correction actions are added for each
incorrect token in A lines.

A.3. Error calculation 65

A.3 Error calculation

1 def g e t e r r o r (input sequence , output sequence) :

2 e r r o r = l i s t ()

3 dy . renew cg ()

4 embedded sequence = embed string (input sequence)

5

6 r n n s t a t e = network . i n i t i a l s t a t e ()

7 rnn outputs = rnn run (r n n s t a t e , embedded sequence)

8

9 f o r rnn output , output char in zip (rnn outputs , output sequence) :

10 w out = dy . parameter (network . w out)

11 b out = dy . parameter (network . b out)

12 p r o b a b i l i t i e s = dy . softmax (output w ∗ rnn output + output b)

13 e r r o r . append(−dy . log (dy . pick (p r o b a b i l i t i e s , output char)))

14 e r r o r = dy . esum (e r r o r)

15 re turn e r r o r

Listing A.1: Calculating error in training the RNN model

1 def g e t e r r o r (input sequence , output sequence) :

2 e r r o r = l i s t ()

3 dy . renew cg ()

4 embedded sequence = embed string (input sequence)

5

6 rnn bwd state = bwd RNN. i n i t i a l s t a t e ()

7 rnn bwd outputs = run rnn (rnn bwd state , embedded sequence [: : − 1]) [: : −1]

8 rnn fwd sta te = fwd RNN . i n i t i a l s t a t e ()

9 rnn fwd outputs = run rnn (rnn fwd state , embedded sequence)

10 rnn outputs = [dy . concatenate ([fwd out , bwd out]) f o r fwd out , bwd out in

zip (rnn fwd outputs , rnn bwd outputs)]

11

12 f o r rnn output , output char in zip (rnn outputs , output sequence) :

13 w out = dy . parameter (network . w out)

14 b out = dy . parameter (network . b out)

15 p r o b a b i l i t i e s = dy . softmax (output w ∗ rnn output + output b)

16 e r r o r . append(−dy . log (dy . pick (p r o b a b i l i t i e s , output char)))

17 e r r o r = dy . esum (e r r o r)

18 re turn e r r o r

Listing A.2: Calculating error in training the BRNN model

A.3. Error calculation 66

1 def g e t e r r o r (input sequence , output sequence) :

2 e r r o r = l i s t ()

3 dy . renew cg ()

4 embedded sequence = embed string (input sequence)

5 encoded str ing = encode s t r ing (embedded sequence) [−1]

6 r n n s t a t e = decoder . i n i t i a l s t a t e ()

7

8 f o r output char in output sequence :

9 r n n s t a t e = r n n s t a t e . add input (encoded str ing)

10 w out = dy . parameter (network . w out)

11 b out = dy . parameter (network . b out)

12 p r o b a b i l i t i e s = dy . softmax (output w ∗ r n n s t a t e . output () + output b)

13 e r r o r . append(−dy . log (dy . pick (p r o b a b i l i t i e s , output char)))

14 e r r o r = dy . esum (e r r o r)

15 re turn e r r o r

Listing A.3: Calculating error in training the encoder-decoder model

1 def g e t e r r o r (s e l f , input sequence , output sequence) :

2 e r r o r = l i s t ()

3 dy . renew cg ()

4 embedded sequence = embed string (input sequence)

5 encoded str ing = encode s t r ing (embedded sequence)

6 r n n s t a t e = decoder . i n i t i a l s t a t e () . add input (dy . vecInput (s e l f .

e n c o d e r s t a t e s i z e))

7

8 f o r output char in output sequence :

9 attended encoding = s e l f . a t t e n d (encoded str ing , r n n s t a t e)

10 r n n s t a t e = r n n s t a t e . add input (attended encoding)

11 w out = dy . parameter (network . w out)

12 b out = dy . parameter (network . b out)

13 p r o b a b i l i t i e s = dy . softmax (output w ∗ r n n s t a t e . output () + output b)

14 e r r o r . append(−dy . log (dy . pick (p r o b a b i l i t i e s , output char)))

15 e r r o r = dy . esum (e r r o r)

16 re turn e r r o r

Listing A.4: Calculating error in training the attention-based encoder-decoder model

A.4. Qualitative comparison of the correction models 67

A.4 Qualitative comparison of the correction models

Source sentence 306 characters

ا كانا السوريونا لا اذاا منا تخليها عنا منصبها ،ا فلذلكا كلفها اقلا وآلاما الناسا ارواحا انا يظنا الشبيحها كبيرا لا زال
ا ياانناا ا ،ا عنوها العصابها حقوقهما منا هذها وياخذوا واحدها قويها هبها يهبواا انا ،ا فعليهما المهينها المعادلهيرتضونا بهذها

 ا والذلا والثمنا سيكونا غالياا ولكنها يستأهلا هذها التضحياتا الخنوعومنا ا ا عااما اربعينا منا اكثرا ندفعا ثمنا حبائيأ

Gold standard reference 309 characters

لزالا كبيرا الشبيحةا يظنا أنا أرواحا وآلاما الناسا أقلا كلفةا منا تخليها عنا منصبها ،ا فلذلكا إذاا كانا السوريونا لا
يرتضونا بهذها المعادلةا المهينةا ،ا فعليهما أنا يهبواا هبةا قويةا واحدةا ويأخذواا حقوقهما منا هذها العصابةا عنوةا .ا إنناا يا
أحبائيا ندفعا ثمنا أكثرا منا أربعينا عاماا ،ا ومنا الخنوعا ،ا والذلا والثمنا سيكونا غالياا ولكنها يستأهلا هذها
.ا التضحيات

Recurrent neural network model prediction 307 characters

ا كانا السوريونا لا اذاا عنا منصبها ،ا فلذلكا تخليها منا كلفها اقلا وآلاما الناسا ارواحا انا يظنا الشبيحةا كبيرا لا زال
ا أنناا ا ا ا عنوها العاابها ههها ننا حقوههما وياخذذاوا واحدها قويها هبها يهبواا انا ،ا فعليهما المهينها المعادلةيرتضونا بهذها

ااضحيا يستتهههههها ا ولننا اااااا سيكننا ا والمنا واللا ،،ا ااخنوعا ومنا ا ،عااما أربعينا منا ا أكثرا ندفعا ثمنأحبائيياا
Bidirectional recurrent neural network prediction 307 characters

ا كانا السوريونا لا إذاا ،ا فلذلكا منصبها عنا تخليها منا كلفها أقلا الناسا والاما أرواحا يظنا أنا الشبيحةا كبيرا لا زال
نناا ا ا ا ععوهها االعصببا ههها قققهمممما ا وياخذوا واحدها قويها هبها يهبواا أنا ،ا فعليهما المهينةا المعادلةيرتضونا بهذها

ا ههها وككنهههستههلا سيكوننغغاياا والمثن،والذلا ،ا النووعومنا وا ،ا امما ا رربعنا ككثرممنا ا منا ا ندفا أأحائئييا
التضحيت
Sequence-to-sequence model prediction 306 characters

ا كانا السوريونا لا إذاا منا تخليها عنا منصبها ،ا فلذلكا كلفها أقلا الناسا وللاما أرواحا أنا يظنا الشبيحةا كبيرا لا زال
ا أنناا ا ا عنوها اللصاببا وحقققهمممننههها وياخذوا واحدها قويها هبها يهبواا أنا ،ا فعليهما المهينةا المعادلهيرتضونا بهذها

ووكنهههستهألههذههااتتضااا اااييا ييونا واللمننا والللا ا ا الخنووا منا ا ا ا ا ا عا رربعنا ا نا ا أككرا ثمما حبائييندفعياا ا

Attention-based sequence-to-sequence model prediction 309 characters

ا كانا السوريونا لا اذاا منا تخليها عنا منصبها ،ا فلذلكا كلفها اقلا الناسا وللاما ارواحا انا يظنا الشبيحها كبيرا لا زال
ا إنااا ا ا عنوها اععصابةا منا هذها واحقققههما وياخذا واحدها قويها هبها يهبواا انا ،ا فعليهما المهينةا المعادلةيرتضونا بهذها

ا يتتههههذذها وككنها االياا والثمنا ا ا ا سيكونا والللا ا ،الخخوعا ومنا ا ،ا عاامأربيينا منا أكثرا منا ا ا ندفا حببائيياا
التضضي

Correct prediction of an incorrect input word
Incorrect input words
Incorrect prediction of an incorrect input word
Incorrect prediction of a correct input word

Figure A.2: Correction of an input using different models. The size of each sequence is
marked in the header of each sequence.

Bibliography

[1] Julian R. Ullmann. A binary n-gram technique for automatic correction of sub-

stitution, deletion, insertion and reversal errors in words. The Computer Journal,

20(2):141–147, 1977.

[2] Andrew McCallum, Kedar Bellare, and Fernando Pereira. A conditional random

field for discriminatively-trained finite-state string edit distance. arXiv preprint

arXiv:1207.1406, 2012.

[3] Karen Kukich. Techniques for automatically correcting words in text. ACM Comput-

ing Surveys (CSUR), 24(4):377–439, 1992.

[4] Richard W Hamming. Error detecting and error correcting codes. Bell Labs Technical

Journal, 29(2):147–160, 1950.

[5] William E Winkler. String comparator metrics and enhanced decision rules in the

fellegi-sunter model of record linkage. 1990.

[6] Robert A Wagner and Michael J Fischer. The string-to-string correction problem.

Journal of the ACM (JACM), 21(1):168–173, 1974.

[7] Fred J. Damerau. A technique for computer detection and correction of spelling

errors. Commun. ACM, 7(3):171–176, March 1964.

[8] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals.

68

Bibliography 69

[9] Leon Davidson. Retrieval of misspelled names in an airlines passenger record sys-

tem. Communications of the ACM, 5(3):169–171, 1962.

[10] Lawrence Philips. Hanging on the metaphone. Computer Language Magazine,

7(12):39–44, December 1990. Accessible at http://www.cuj.com/documents/

s=8038/cuj0006philips/.

[11] Joseph J Pollock and Antonio Zamora. Collection and characterization of spelling

errors in scientific and scholarly text. Journal of the Association for Information Science

and Technology, 34(1):51–58, 1983.

[12] Clifton Phua, Vincent Lee, and K Smith-Miles. The personal name problem and a

recommended data mining solution. Encyclopedia of Data Warehousing and Mining,

2006.

[13] Emmanuel J Yannakoudakis and David Fawthrop. The rules of spelling errors. In-

formation Processing & Management, 19(2):87–99, 1983.

[14] Linda G Means. Cn yur cmputr raed ths? In Proceedings of the second conference

on Applied natural language processing, pages 93–100. Association for Computational

Linguistics, 1988.

[15] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2 edition, 2003.

[16] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, Cambridge, MA, USA, 1999.

[17] Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer.

The mathematics of statistical machine translation: Parameter estimation. Computa-

tional linguistics, 19(2):263–311, 1993.

[18] Ronald Rosenfeld. A maximum entropy approach to adaptive statistical language

modeling. In Computer, Speech and Language, 1996.

[19] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Tech-

niques - Adaptive Computation and Machine Learning. The MIT Press, 2009.

http://www.cuj.com/documents/s=8038/cuj0006philips/
http://www.cuj.com/documents/s=8038/cuj0006philips/

Bibliography 70

[20] Claudio Lottaz, Christian Iseli, C Victor Jongeneel, and Philipp Bucher. Mod-

eling sequencing errors by combining hidden markov models. Bioinformatics,

19(suppl 2):ii103–ii112, 2003.

[21] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding

recurrent networks. CoRR, abs/1506.02078, 2015.

[22] Nal Kalchbrenner and Phil Blunsom. Recurrent convolutional neural networks for

discourse compositionality. CoRR, abs/1306.3584, 2013.

[23] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages 3104–

3112, 2014.

[24] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches

to attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[25] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[26] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-

tion by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[27] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On us-

ing very large target vocabulary for neural machine translation. arXiv preprint

arXiv:1412.2007, 2014.

[28] Noura Farra, Nadi Tomeh, Alla Rozovskaya, and Nizar Habash. Generalized

character-level spelling error correction. In ACL, 2014.

[29] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. Bulletin of mathematical biology, 52(1):99–115, 1990.

[30] Mario Costa. Probabilistic interpretation of feedforward network outputs, with rela-

tionships to statistical prediction of ordinal quantities. International journal of neural

systems, 7(05):627–637, 1996.

Bibliography 71

[31] Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. How to

construct deep recurrent neural networks. CoRR, abs/1312.6026, 2013.

[32] Eric H Lenneberg. The biological foundations of language. Hospital Practice,

2(12):59–67, 1967.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

put., 9(8):1735–1780, November 1997.

[34] Alex Graves. Generating sequences with recurrent neural networks. CoRR,

abs/1308.0850, 2013.

[35] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Multi-dimensional re-

current neural networks. CoRR, abs/0705.2011, 2007.

[36] Justin Bayer, Daan Wierstra, Julian Togelius, and Jürgen Schmidhuber. Evolving

memory cell structures for sequence learning. Artificial Neural Networks–ICANN

2009, pages 755–764, 2009.

[37] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks. PhD the-

sis, Citeseer, 2008.

[38] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-

rectional lstm and other neural network architectures. Neural Networks, 18(5):602–

610, 2005.

[39] Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen

Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks

and learning systems, 2016.

[40] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997.

[41] Michael Schuster. On supervised learning from sequential data with applications

for speech recognition. 04 1999.

[42] Toshiaki Fukada, Mike Schuster, and Yoshinori Sagisaka. Phoneme boundary esti-

mation using bidirectional recurrent neural networks and its applications. Systems

and Computers in Japan, 30(4):20–30, 1999.

Bibliography 72

[43] Abdel-rahman Mohamed, Frank Seide, Dong Yu, Jasha Droppo, Andreas Stoicke,

Geoffrey Zweig, and Gerald Penn. Deep bi-directional recurrent networks over

spectral windows. In Automatic Speech Recognition and Understanding (ASRU), 2015

IEEE Workshop on, pages 78–83. IEEE, 2015.

[44] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recogni-

tion with deep bidirectional lstm. In Automatic Speech Recognition and Understanding

(ASRU), 2013 IEEE Workshop on, pages 273–278. IEEE, 2013.

[45] Martin Chodorow, Markus Dickinson, Ross Israel, and Joel R Tetreault. Problems in

evaluating grammatical error detection systems. In COLING, pages 611–628, 2012.

[46] Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy

Susanto, and Christopher Bryant. The conll-2014 shared task on grammatical error

correction. 2014.

[47] Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error cor-

rection. In Proceedings of the 2012 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, pages 568–572.

Association for Computational Linguistics, 2012.

[48] Ting-Hui Kao, Yu-Wei Chang, Hsun-Wen Chiu, Tzu-Hsi Yen, Joanne Boisson, Jian-

Cheng Wu, and Jason S Chang. Conll-2013 shared task: Grammatical error correc-

tion nthu system description. In CoNLL Shared Task, pages 20–25, 2013.

[49] Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wajdi Zaghouani, and Ossama

Obeid. The first qalb shared task on automatic text correction for arabic. 2014.

[50] Mariano Felice and Ted Briscoe. Towards a standard evaluation method for gram-

matical error detection and correction. In HLT-NAACL, pages 578–587, 2015.

[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th annual meeting

on association for computational linguistics, pages 311–318. Association for Computa-

tional Linguistics, 2002.

[52] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. Ground truth

for grammatical error correction metrics. In Proceedings of the 53rd Annual Meeting of

Bibliography 73

the Association for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing, volume 2, pages 588–593, 2015.

[53] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. GLEU without

tuning. eprint arXiv:1605.02592 [cs.CL], 2016.

[54] Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Ossama Obeid, Nadi Tomeh, Alla

Rozovskaya, Noura Farra, Sarah Alkuhlani, and Kemal Oflazer. Large scale arabic

error annotation: Guidelines and framework.

[55] Ossama Obeid, Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Kemal Oflazer,

and Nadi Tomeh. A web-based annotation framework for large-scale text correction.

In IJCNLP, pages 1–4, 2013.

[56] Arfath Pasha, Mohamed Al-Badrashiny, Mona T Diab, Ahmed El Kholy, Ramy Es-

kander, Nizar Habash, Manoj Pooleery, Owen Rambow, and Ryan Roth. Madamira:

A fast, comprehensive tool for morphological analysis and disambiguation of arabic.

In LREC, volume 14, pages 1094–1101, 2014.

[57] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,

Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,

Trevor Cohn, et al. Dynet: The dynamic neural network toolkit. arXiv preprint

arXiv:1701.03980, 2017.

[58] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155,

2003.

[59] Daniel Dahlmeier and Hwee Tou Ng. A beam-search decoder for grammatical error

correction. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natu-

ral Language Processing and Computational Natural Language Learning, pages 568–578.

Association for Computational Linguistics, 2012.

[60] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly super-

vised memory networks. CoRR, abs/1503.08895, 2015.

[61] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van

Merriënboer, Armand Joulin, and Tomas Mikolov. Towards ai-complete question

answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

Bibliography 74

[62] Keisuke Sakaguchi, Matt Post, and Benjamin Van Durme. Grammatical error cor-

rection with neural reinforcement learning. CoRR, abs/1707.00299, 2017.

[63] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing ma-

chines. CoRR, abs/1505.00521, 2015.

[64] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivations
	Contributions
	Thesis Outline
	Target Audience

	Related work
	Error detection techniques
	Dictionary lookup
	n-gram analysis

	Error correction techniques
	Minimum edit distance
	Similarity key technique
	Rule-based techniques
	Probabilistic techniques

	Background
	Neural Networks
	Multilayer Perceptron
	Back-propagation

	Recurrent Neural Networks
	Backpropagation Through Time
	Long short-term memory

	Bidirectional Recurrent Neural Network
	Sequence-to-sequence models
	Attention mechanism

	Evaluation metrics
	Standard metrics
	MaxMatch (M2)
	Method

	I-measure
	Method

	BLEU and GLEU

	Experimental Setup
	Task
	The QALB corpus
	QALB corpus structure
	Creating data sets
	Refining data sets

	Technical details

	Correction models
	Sentence Representation
	Models
	RNN model
	BRNN model
	Encoder-decoder model
	Attention-based encoder-decoder

	Output generation

	Experiments and Results
	Data
	Baseline system
	Results of the models
	MaxMatch M2
	I-measure
	BLEU and GLEU

	Conclusion and future work
	Limitations
	Future studies
	Conclusion

	Appendix
	Adam
	Annotation example from the QALB corpus
	Error calculation
	Qualitative comparison of the correction models

	Bibliography

