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Abstract

Knowledge graphs offer an excellent solution
for representing the lexical-semantic structures
of lexicographic data. However, working with
the SPARQL query language represents a con-
siderable hurdle for many non-expert users
who could benefit from the advantages of this
technology. This paper addresses the chal-
lenge of creating natural language interfaces
for lexicographic data retrieval on knowledge
graphs such as Wikidata. We develop a multi-
dimensional taxonomy capturing the complex-
ity of Wikidata’s lexicographic data ontology
module through four dimensions and create a
template-based dataset with over 1.2 million
mappings from natural language utterances to
SPARQL queries. Our experiments with GPT-
2 (124M), Phi-1.5 (1.3B), and GPT-3.5-Turbo
reveal significant differences in model capabili-
ties. While all models perform well on famil-
iar patterns, only GPT-3.5-Turbo demonstrates
meaningful generalization capabilities, suggest-
ing that model size and diverse pre-training are
crucial for adaptability in this domain. How-
ever, significant challenges remain in achieving
robust generalization, handling diverse linguis-
tic data, and developing scalable solutions that
can accommodate the full complexity of lexi-
cographic knowledge representation.

Dataset | Models ( Phi-1.5 | GPT-2 )

1 Introduction

Knowledge Graphs (KGs) have emerged as scal-
able and interoperable resources for organizing and
accessing the vast volumes of data produced in our
digital age. Particularly for lexicographic data, as
found in dictionaries, KGs offer an ideal structure
for capturing the complex relationships between
words, meanings, and linguistic patterns due to the
highly interrelated nature of this information (Ah-
madi, 2022, p. 14). The preservation and accessibil-
ity of lexicographic data is crucial for standardizing

Query in Natural Language:
“What is the gender of Apfel in German?”

Generated SPARQL Query:

SELECT ?lexeme ?qitem ?lemma ?qitemLabel
WHERE
{
VALUES ?lemma {'Apfel'@de} .
?lexeme wikibase:lemma ?lemma ;

wdt:P5185 ?qitem.
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'

}
}

Figure 1: Conversational lexicography: enabling natural
language queries to KGs by automatically generating
SPARQL code, eliminating the need for manual query
writing

language understanding, supporting linguistic re-
search, documenting cultural diversity (Gregson
et al., 2015), and crucially, increasing interoperabil-
ity in language technology. Recent advancements
in Large Language Models (LLMs) have opened
new pathways for creating natural language inter-
faces to KGs, potentially democratizing access to
this structured linguistic knowledge (Avila et al.,
2024).

Despite their advantages, KGs remain largely in-
accessible to non-technical users due to the special-
ized knowledge required to query them effectively.
Currently, accessing information in KGs requires
proficiency in a query language, notably SPARQL,
which presents a significant barrier to entry. Users
must not only master this technical query language
but also understand the specific ontologies and data
models that structure each KG (Ngonga Ngomo
et al., 2013). Wikidata1, a prominent open-source
KG, employs a collaboratively developed semantic
structure that requires detailed knowledge to navi-
gate effectively. This technical complexity limits

1https://www.wikidata.org

https://huggingface.co/datasets/ksennr/lexicographicDataSPARQL
https://huggingface.co/ksennr/phi-1_5-finetuned-SPARQLWikidata
https://huggingface.co/ksennr/gpt-2-lexicographic_data_SPARQL
https://www.wikidata.org


the broader utility of KGs, particularly for audi-
ences such as language learners, teachers, and other
non-technical stakeholders who could benefit from
lexicographic data access (Warren and Mulholland,
2020).

This paper addresses the significant research gap
in creating effective natural language interfaces for
lexicographic data retrieval on KGs such as Wiki-
data. To that end, we develop a multidimensional
taxonomy that captures the complexity of Wiki-
data’s lexicographic data ontology module, sys-
tematically categorizing the diverse information
requests that may be queried on the KG. Addi-
tionally, we create a template-based dataset that
maps natural language utterances to corresponding
SPARQL queries, designed to reflect the variety
of possible information requests identified in our
taxonomy. Finally, we conduct preliminary exper-
iments using transformer-based language models
of modest parameter sizes to generate SPARQL
queries from natural language inputs, as exempli-
fied in Figure 1, evaluating their performance on
both seen and unseen utterances to assess the im-
pact of model parameter size and training method.

2 Related Work

The translation of natural language queries into
SPARQL has received significant attention in re-
cent years, particularly with the advent of LLMs
and the increasing importance of KGs. This section
provides a brief description of datasets, generation
techniques and evaluation methods.

Datasets The development of specialized
datasets has accelerated progress in natural lan-
guage interfaces to KGs. The Question Answering
over Linked Data (QALD) series represents a
foundational contribution, with QALD-10 offering
the most recent iteration supporting both DBpedia
and Wikidata queries (Usbeck et al., 2023). Build-
ing on this foundation, the Large-Scale Complex
Question Answering Dataset (LC-QuAD 2.0)
expands the scope with 30,000 natural language
utterances paired with corresponding SPARQL
queries (Dubey et al., 2019). The DBpedia Natural
Language Question Answering (DBNQA) dataset
stands as one of the most comprehensive resources,
containing nearly 900,000 data tuples for training
and evaluation (Hartmann et al., 2018). Addressing
the critical need for cross-domain generalization,
Kosten et al. (2023) introduce Spider4SPARQL
with over 10,000 manually crafted SPARQL

queries. Experimental evaluations using LLMs
demonstrate that Spider4SPARQL presents
substantial challenges in achieving high accuracy.

Generation Approaches to generating SPARQL
queries from natural language have evolved from
traditional machine learning to increasingly so-
phisticated neural architectures. Early work by
Soru et al. (2018, 2017) establish the foundational
Neural SPARQL Machine paradigm, comprising a
template-based generator, a sequence-to-sequence
learner, and an interpreter that translates user in-
puts into SPARQL. Alternative approaches lever-
age structural properties of KGs to extract potential
RDF triples (Hu et al., 2018; Lin and Lu, 2022),
while subsequent advances explore diverse neu-
ral architectures, including pre-trained models like
BART and T5 (Banerjee et al., 2022). A persis-
tent challenge is handling incomplete vocabulary,
particularly entity identifiers in KGs, e.g., Wiki-
data’s Q811486 for ‘tree’, that may not appear
during training; researchers have addressed this
through Named Entity Disambiguators (Xu et al.,
2023) and entity masking techniques. For special-
ized domains, Zou et al. (2021) develope a text-to-
SPARQL model utilizing a pointer network-based
encoder with relation-aware attention mechanisms,
while Qi et al. (2024) introduce Triplet Structure
Enhanced T5, which undergoes a specialized pre-
training phase to better handle complex query struc-
tures. The emergence of LLMs has further trans-
formed this landscape (Perevalov and Both, 2024).
D’Abramo et al. (2025) apply in-context learning
using Mixtral (8x7B), Llama-3 (70B), and CodeL-
lama (70B) to achieve state-of-the-art results, while
other approaches demonstrate success through fine-
tuning (Brei et al., 2024) and one-shot learning
(Pliukhin et al., 2023). Rony et al. (2022) pro-
pose SGPT, employing transformer encoders with
GPT-2 as the decoder and entity placeholders for
post-processing.

Evaluation The evaluation of natural language
to SPARQL systems has traditionally relied on met-
rics such as accuracy, BLEU (Papineni et al., 2002),
F1-score, or a combination of those (Rony et al.,
2022). However, these metrics have limitations, as
syntactically different queries can produce identi-
cal results. (Cohen and Kim, 2013) propose eval-
uation frameworks that combine syntactic metrics
with semantic correctness assessments to capture
the practical utility of generated queries. Recent



Taxonomy

D1: Lexical Properties

D2: Single/Multi Lexeme

D3: Mono/Multilingual

D4: Simple/Complex Queries

SELECT DISTINCT ?lexeme ?qitemPos ?pos ?
lemma ?word
WHERE 
{
  VALUES ?lang { 'V_WORD'@en }.
  ?qitemLang rdfs:label ?lang . 
  VALUES ?pos { 'V_POS'@en }.
  ?qitemPos rdfs:label ?pos . 
  ?lexeme a ontolex:LexicalEntry ;
            dct:language ?qitemLang ;
            wikibase:lexicalCategory ?qitemPos ;
            wikibase:lemma ?lemma ;
            ontolex:lexicalForm [
ontolex:representation ?word ] . 
  FILTER (regex(?word, 'n$')) .
}

SELECT DISTINCT ?lexeme ?qitemPos ?pos ?
lemma ?word
WHERE 
{
  VALUES ?lang { 'Danish'@en }.
  ?qitemLang rdfs:label ?lang . 
  VALUES ?pos { 'noun'@en }.
  ?qitemPos rdfs:label ?pos . 
  ?lexeme a ontolex:LexicalEntry ;
            dct:language ?qitemLang ;
            wikibase:lexicalCategory ?qitemPos ;
            wikibase:lemma ?lemma ;
            ontolex:lexicalForm [
ontolex:representation ?word ] . 
  FILTER (regex(?word, 'n$')) .
}

Template Creation Dataset Population Fine-tuning / Training

look up nouns in Danish ending with 'n'

Query in natural language

Figure 2: Our approach to creating SPARQL templates based on a four-dimension taxonomy followed by dataset
population and model implementation. The ultimate goal is to infer the models by querying in natural language.

work suggests moving beyond simple comparison
with gold standards toward functional correctness
testing (Chen et al., 2021), similar to general code
generation evaluation approaches.

As such, several research gaps persist in this
domain. First, existing datasets predominantly fo-
cus on factual knowledge, leaving lexicographi-
cal queries underexplored. Second, the optimal
approach to handling incomplete vocabulary and
generalization remains an open question. Finally,
while LLMs show promise for SPARQL genera-
tion, their potential specifically for lexicographic
data queries remains uncertain.

3 Methodology

We develop a systematic methodology to map natu-
ral language queries to SPARQL for lexicographic
data in Wikidata, illustrated in Figure 2. This relies
on a taxonomy to generate query templates which
are then populated with data instances to create a
comprehensive dataset. The dataset is subsequently
used to train and fine-tune LLMs for the SPARQL
generation task. We provide background informa-
tion about Wikidata in Appendix B.

3.1 Taxonomy for the Lexicographic Data
To systematically approach template creation for
lexicographic data, we develop a taxonomy that
defines the relevant aspects of translating natural
language to SPARQL queries in Wikidata’s lexico-
graphic domain. Our taxonomy is based on three
criteria:

Criterion 1: It should encompass the full
range of SPARQL syntax constructs and oper-
ators
Criterion 2: It should cover the variety of use
cases for lexicographic data
Criterion 3: It should be particularly detailed
in frequently queried areas

These criteria guided the identification of four
feature dimensions (D) that capture the heterogene-
ity of lexicographic queries:

D1: Lexical Properties This dimension ad-
dresses Criterion 2 by covering the range of lexi-
cographic properties in Wikidata. These properties
serve as fundamental building blocks for SPARQL
queries using the lexicographic data ontology mod-
ule. We classify these properties into the following
seven categories, summarized in Table C.1 in the
appendix:

• Linguistic Properties: Grammatical and mor-
phological features, e.g., grammatical gender,
conjugation class

• Historical References: Temporal aspects of
lexemes, e.g., first attestation

• Syntactic Functions: Roles of lexemes within
sentences, e.g., auxiliary verb, examples

• Semantic Relations: Meaning relationships
between lexemes, e.g., synonyms, antonyms

• Orthographic and Phonetic Features: Written
and spoken forms, e.g., IPA transcription

• Translation and Lexical Variety: Cross-
linguistic information and variants, e.g., bor-
rowed forms, regional variants

• Stylistic Attributes: Context-dependent char-
acteristics, e.g., language register, tone

D2: Single vs. Multi Lexeme Output This di-
mension focuses on whether the natural language
query targets a single lexeme or multiple lexemes.
This classification is based on the semantics of
the utterance rather than the actual number of lex-
emes in the output. For example, the question

“What is the grammatical gender of the French word
‘livre’?” is classified as Single-Lexeme Output de-
spite potentially returning multiple homograph lex-
emes (masculine ‘livre’ meaning ‘book’ and fem-
inine ‘livre’ meaning ‘pound’ as unit of weight).



This dimension is particularly important for ad-
dressing Criterion 1, as certain SPARQL keywords
and structures are associated with either Single-
or Multi-Lexeme queries. Conversely, some utter-
ances inherently imply a Multi-Lexeme Output. An
example is the utterance “Create a French-German-
Basque lexicon”.

D3: Mono- vs. Multilinguality This dimension
distinguishes between queries that involve one lan-
guage versus those that involve multiple languages.
Classification is based on the languages of all lex-
emes that would appear in the output if all variables
were included. For instance, the query “What is
the French word for ‘fish’?”, is classified as multi-
lingual because lexemes from multiple languages
appear in the result. This dimension addresses Cri-
terion 3.

D4: Simple vs. Complex Queries This dimen-
sion analyzes query complexity based on the num-
ber of lexical properties involved. While “complex”
in literature often refers to queries requiring multi-
ple reasoning steps (Wang et al., 2024), we define
simple queries as those containing only one lexi-
cal property, e.g., “From what word is the French
word ‘cigare’ derived?”, and complex queries as
those containing multiple properties. This defini-
tion better suits lexicographic data, where users
target properties of a single lemma rather than per-
forming multi-step reasoning.

3.2 Implementation

We implement two distinct approaches to fine-tune
and train models for natural language to SPARQL:

• First, we fine-tune a pre-trained Phi-1.5 model
(Li et al., 2023) using the Low-Rank Adapta-
tion (LoRA) framework. Phi-1.5 is a small
language model with 1.3B parameters that
demonstrates strong capabilities in both nat-
ural language and code generation. For fine-
tuning, we use the following hyperparameters:
learning rate of 0.0002, train batch size of 4,
Adam optimizer, cosine learning rate sched-
uler, and mixed precision training. Following
Schimanski et al. (2024), we limited training
to a single epoch to avoid overfitting. The
LoRA approach allowed us to fine-tune 0.44%
of the model’s parameters.

• Second, we train a GPT-2 architecture with
124M parameters (Radford et al., 2019) from

scratch using the Hugging Face library. For
this model, we use a learning rate of 5e-05,
train batch size of 16, Adam optimizer, linear
learning rate scheduler, and trained for three
epochs.

Both models are trained on data formatted by
concatenating natural language utterances prefixed
with “question:”, and corresponding SPARQL
queries prefixed with “answer: <code>” and
“suffixed with "</code>"”. This format simpli-
fies the parsing of SPARQL code from the output.
The training utilized Phi-1.5’s tokenizer, which ex-
tends GPT-2’s BPE vocabulary with special tokens
for code representation. We employ two NVIDIA
GeForce RTX 3090 GPUs with CUDA 12.4 for
training.

3.3 Evaluation
Inspired by Cohen and Kim (2013), we deploy an
evaluation framework structured around the follow-
ing four key principles:
A. Automatic evaluation of the text-to-SPARQL

model rather than manual;
B. Functionality prioritizing functional cor-

rectness over exact match, i.e., character-
by-character comparison of the generated
SPARQL query with a gold standard reference
query. In our evaluation setup, we use Chen
et al. (2021)’s pass@k metric which generates
k responses for a given prompt containing few-
shot examples. Each of the generated responses
is then run against the KG.2 If the triples re-
trieved by the generated query match or include
the expected answer triples from the gold stan-
dard query, the generated response is deemed
correct. The pass@k metric is then calculated
as the ratio of all the correctly generated re-
sponses (kcorrect) within the k trials and all gen-
erated responses:

pass@k =
kcorrect

k
(1)

C. Granularity employing unit test-like checks
to evaluate specific aspects of the generated
SPARQL queries, including syntax correctness
and appropriate variable usage rather than just
overall correctness. As such, we define a gran-
ularity ratio to assess the fine-grained quality
of generated queries as follows:

Rgranularity =
cpass

call
(2)

2Wikidata Query Service: https://query.wikidata.org



where cpass is the number of passed checks and
call is the total number of checks performed. A
list of the tests is provided in Appendix C.

D. Generalization assessing the model’s ability to
generalize by altering input questions to trigger
different query types. To do so, we transform
a training question like “What is the gender
of ‘Apfel’ in German?” (requiring a SELECT
query) into a test question like “Is the gender
of ‘Apfel’ in German feminine?” (requiring
an ASK query), testing whether the model can
adapt to this structural change.

Finally, for string-based matching, we report per-
formance using BLEU as implemented in Sacre-
BLEU (Post, 2018).3

4 Dataset

To develop a comprehensive dataset mapping nat-
ural language utterances to SPARQL queries tar-
geting lexicographic data in Wikidata, we adopt
a template-based approach similar to Soru et al.
(2017) based on the taxonomies defined in Section
3.1. Each data point in our templates consists of
three elements:

1. utterance: natural language input reflecting a
user’s question;

2. template_name: identifier for the template in
SPARQL containing tags that are later popu-
lated with actual words;

3. query: the populated SPARQL template
aligned with the utterance.

All utterances are in English, though they may
reference terms in other languages, e.g., “What is
the grammatical gender of ‘livre’ in French?”. The
following is an instance in our populated dataset:

utterance: where does the word color come from?
template_name: q20
query:

SELECT ?etonymLexeme ?qitemLanguageOfOrigin
?etonym ?qitemLanguageOfOriginLabel

WHERE {
VALUES ?lemma {'color'@en} .
?lexeme wikibase:lemma ?lemma ;

wdt:P5191 ?etonymLexeme.
?etonymLexeme dct:language ?qitemOrigin;

wikibase:lemma ?etonym .
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'

}
}

3
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2

To address the limited diversity inherent in
template-based approaches, we decouple semantics
from syntax by generating multiple variations of
utterance templates while preserving their meaning.
This is accomplished by using GPT-4 to generate
alternative phrasings with random selection during
template population with an example provided in
Appendix A.

4.1 Template Sources

Our dataset comprises five specialized modules
following different paradigms:

Google Templates Following Hazoom et al.
(2021), who advocate deriving data from natural-
istic environments, we extract questions related to
lexicographic data from Google’s Natural Ques-
tions dataset. We identify relevant lexicographic
terms and extract 3,296 user questions contain-
ing these terms. To do so, we cluster questions
using k-means and FlagEmbeddings embedding
model (Chen et al., 2024)4. We then manually re-
view clusters to identify 639 genuinely relevant
questions. The selected questions yield 21 unique
SPARQL templates that closely align with typi-
cal user questions (see Appendix C.2 for sample
cluster). Analysis of the Natural Questions dataset
showed 35% multilingual vs. 65% monolingual
and 52% complex vs. 48% simple queries, inform-
ing our template distribution to meet Criterion 3.

Property Templates To enable efficient Wiki-
data usage through natural language interfaces, we
also create templates covering properties specific
to the WikibaseLexemes extension. We manually
select 36 relevant properties from lexicographi-
cal properties, categorizing them based on their
domain (lexeme, sense, or form) and range data
type (string, Q-item, etc.). This dual classifica-
tion resulted in nine archetypal SPARQL templates,
which are further adapted to handle multi-lexeme
outputs and ASK statements.

Multi-Property Templates These templates ad-
dress queries requiring multiple pieces of informa-
tion for a given lexeme. All multi-property queries
derive from a single adjustable base template modi-
fied to handle both single-result and multiple-result
queries. The templates use the OPTIONAL keyword
to handle cases where properties are unavailable for
certain lexemes. Properties are randomly selected

4BAAI’s BGE-Large variant
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Figure 3: Distribution of the number of populated data
tuples per template

from a pool of 211 options (not restricted to Wik-
ibaseLexemes) to prevent overfitting. Two versions
of utterance templates were used: single-lexeme
and multi-lexeme.

Language-Independent Templates These tem-
plates function without specifying the lexeme’s
language, enabling cross-language lookups. They
use string matching (FILTER(STR(?lemma) =
"word")) rather than language-specific VALUES
clauses, trading computational efficiency for flex-
ibility. Since these queries can return numer-
ous lexemes, we introduced templates restricting
output based on lexical category and grammat-
ical features. This resulted in eight templates
covering both language-dependent and language-
independent queries.

Rule-Based Templates This paradigm incorpo-
rates existing work in lexicographic data querying.
We adapted seven templates from SPARQLify5,
a simple form-based query generator. These
templates cover advanced use cases employing
multiple properties and SPARQL functions as in
regex()) not represented in other paradigms, such
as “Find at most 50 longest words in {language}”
and “List at most 50 onomatopoeia in {language}”.

4.2 Dataset Population

We populate templates by replacing tags with actual
lemmas from Wikidata, ensuring that lexemes had
relevant properties whenever possible. The data
used represents a snapshot from April-May 2024,
constrained by Wikidata’s query limits (30,000 data
points maximum, one-minute computation time).
A custom Python program replaced template tags
with corresponding population data.

5https://sinaahmadi.github.io/SPARQLify

4.3 Dataset Statistics

Our dataset contains 1,270,113 data tuples derived
from 189 templates with an average of 6,191 in-
stances per template. Templates populated between
1 (for limit_t9_P2859 and order_t9_P2859) and
29,922 (for ask_t9_P7243 and t9_P7243) data tu-
ples each. Approximately half of the templates
populated over 1,000 data tuples. The distribution
of the number of populated tuples per template is
illustrated in Figure 3. Following Soru et al. (2017),
we define the train-test split such that the evalua-
tion dataset contains at most 10% of data points
per template, with a maximum of 20 data points.
This ensures a balanced evaluation set while main-
taining a substantial training set. From our dataset,
we include at least one instance of each template
in the test set to ensure comprehensive evaluation.

5 Experiments and Results

In order to evaluate the effectiveness of various
language models in generating SPARQL queries
for lexicographic data on Wikidata, we conduct ex-
periments with three strategically selected models:
GPT-3.5-Turbo as a baseline, and our fine-tuned
Phi-1.5 and trained GPT-2 models. When evalu-
ated in a zero-shot setting without fine-tuning or
training, both Phi-1.5 and GPT-2 failed completely,
scoring 0 across all metrics, demonstrating that
task-specific adaptation is essential for SPARQL
generation with these models.

Our selection of models prioritizes those with
modest parameter counts (1.3B for Phi-1.5 and
124M for GPT-2) to demonstrate if effective
SPARQL generation can be achieved without re-
quiring computationally expensive models, mak-
ing deployment more accessible for resource-
constrained environments. Additionally, these mod-
els represent different training approaches–GPT-
3.5-Turbo as a commercial API-based model, Phi-
1.5 as a recent code-capable model amenable to
parameter-efficient fine-tuning, and GPT-2 as a
fully trainable smaller model–providing a diverse
evaluation spectrum. For each model, we assess
performance using the evaluation framework de-
scribed in Section 3.3. The results are summarized
in Table 1.

5.1 GPT-3.5-Turbo

We evaluate GPT-3.5-Turbo to establish a baseline
against which our custom-trained models can be
compared. Despite its extensive parameter count,

https://sinaahmadi.github.io/SPARQLify


Model Parameter
Non-Generalization Generalization

pass@k↑ Rgranularity↑ BLEU↑ pass@k↑ Rgranularity↑ BLEU↑

Phi 1.5 k=1 0.86 0.84 92.1 0 0.7 54.4
GPT-2 k=1 0.90 0.84 94.4 0 0.41 0.3

GPT-3.5 Turbo
k=1 0.87 0.94 99.2 0.41 0.81 72.7
k=3 0.89 0.95 99.6 0.57 0.84 67.0

Table 1: Performance of few-shot fine-tuned GPT-3.5 Turbo in comparison to our trained and fine-tuned models
using pass@k [0, 1] for functionality, Rgranularity [0, 1] for granularity and BLEU [0, 100]. Although GPT-3.5 Turbo
as the baseline performs better than our models, our trained GPT-2 model achieves a higher pass@k despite having
significantly less parameters. Due to computational costs, k = 3 could not be included for Phi 1.5 and GPT-2.

this model performs poorly when directly asked
to generate lexicographic SPARQL queries. We
leverage GPT-3.5-Turbo’s strong few-shot learn-
ing capabilities by employing prompt engineering,
sampling two random utterances and corresponding
SPARQL queries from the training dataset for each
template to create the prompt, with an example in
Appendix A.

In the evaluation without generalization, GPT-
3.5-Turbo achieves a pass@1 score of 0.87 and
Rgranularity of 0.94. When allowed to generate mul-
tiple responses (k = 3), performance improves to
0.89 and 0.95 respectively. For the evaluation with
generalization, performance drops to a pass@1
score of 0.41 and Rgranularity of 0.81, improving
to 0.57 and 0.84 with k = 3, highlighting the chal-
lenge of adapting to novel query structures. The
same pattern is seen in BLEU scores, except in
generalization where the BLEU score with k = 3
(67.0) is lower than k = 1 (72.7). This counter-
intuitive result can be explained by the model’s
tendency to explore more diverse, but potentially
less syntactically aligned, query structures when
generating multiple responses. While this diver-
sity improves functional correctness (as measured
by pass@k), it reduces strict textual similarity to
reference queries.

5.2 Phi 1.5

We evaluate Phi-1.5 fine-tuned on our dataset with
k = 1 only, a decision driven by significant com-
putational demands—the evaluation without gen-
eralization alone requires 23 hours to complete.
The model achieves a pass@1 score of 0.86 and
Rgranularity of 0.84 in non-generalization scenario.

Our analysis indicates that Phi-1.5 does not at-
tempt to generalize beyond specific SPARQL struc-
tures from fine-tuning. While information from

utterances is correctly mapped to appropriate po-
sitions in the code, the query structure remains
closely aligned with training examples. In the
generalization scenario, the model struggles sig-
nificantly with a Rgranularity of 0.7, indicating that
many generated queries fail to meet basic correct-
ness criteria.

5.3 GPT-2
We evaluate GPT-2 trained from scratch on our
dataset, representing a model unexposed to any
data except our training examples. Similar to Phi-
1.5, we compute results with k = 1 only due
to computational constraints. In the evaluation
without generalization, GPT-2 achieves the high-
est pass@1 score among all models at 0.90, with
a Rgranularity of 0.84. In the generalization sce-
nario, however, GPT-2’s performance deteriorates
substantially, with a Rgranularity of only 0.41 and
BLEU score of 0.3, the lowest among all models.
This suggests a high degree of memorization rather
than a deeper understanding of the relationship be-
tween natural language and SPARQL. The model’s
strong performance in familiar scenarios coupled
with poor generalization indicates effective pattern
learning but limited transfer capability.

5.4 Qualitative Analysis
Our qualitative analysis reveals distinct patterns
across models. Phi-1.5 demonstrates limited se-
mantic understanding, surprising knowledge of
less-resourced language tags, and accurate syn-
tactic mapping, but struggles with generalization,
often generating syntactically correct but semanti-
cally nonsensical SPARQL code. GPT-2 exhibits
similar semantic limitations (interpreting “lengthy
words” as words with specific prefixes) and contex-
tual failures, but handles special characters well; in
generalization, it produces random word sequences



and incomplete syntax. GPT-3.5-Turbo occasion-
ally uses incorrect language tags and struggles with
special characters, but shows better understanding
of complex utterances and develops creative adap-
tation strategies like nesting SELECT statements
within ASK blocks. Overall, few-shot GPT-3.5-
Turbo achieves superior performance across most
metrics, though trained GPT-2 excels in pass@1
for familiar queries despite having significantly
fewer parameters. These findings suggest that
while smaller models can be effectively trained for
domain-specific SPARQL generation within famil-
iar patterns, robust generalization to novel query
structures may require larger models with diverse
pre-training or more sophisticated fine-tuning ap-
proaches.

6 Conclusion and Discussion

This paper addresses the challenge of creating
natural language interfaces for lexicographic data
in KGs. We develop a multidimensional taxon-
omy capturing the complexity of Wikidata’s lexi-
cographic data representation based on which we
create a template-based dataset with over 1.2 mil-
lion mappings from natural language utterances to
SPARQL queries. Our experiments with GPT-2,
Phi-1.5, and GPT-3.5-Turbo reveal significant dif-
ferences in model capabilities. While all models
perform well on familiar query patterns (pass@1
scores ranging from 0.86 to 0.90), only GPT-3.5-
Turbo demonstrates meaningful generalization ca-
pabilities (pass@3 of 0.57 in the generalization
scenario). This suggests that model size and di-
verse pre-training are crucial for adaptability in this
domain. This work is timely and important as KGs
continue to grow in complexity, creating an urgent
need for accessible interfaces.

Limitations and Future Work While our exper-
iments demonstrate promising results with mod-
els of modest size, future work should explore
more recent reasoning-focused models such as
DeepSeek, QwQ, and Llama-3, which may offer
improved performance for complex SPARQL gen-
eration tasks. Additionally, scaling experiments
with larger model variants could help establish the
relationship between model size and SPARQL gen-
eration capabilities, potentially identifying optimal
efficiency-performance tradeoffs for this specific
task. As such, future work should focus on im-
proving model generalization through more diverse
training data, expanding this approach to other

KGs, particularly Dbnary (Sérasset, 2012), and con-
ducting user studies to evaluate practical utility for
different stakeholder groups in lexicography and
linguistics.
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A Prompts

ChatGPT prompt for utterance diversification

Input: Rewrite the following sentence 10 times in a
way someone may ask it on Google. Keep it short:
Look up {word} in any language in {form_word}
form
Output:

• Translate {word} to any language in
{form_word}?

• How to say {word} in {form_word} across lan-
guages?

• Find {word} in any language’s {form_word}?
• Discover {word} in different languages,

{form_word}?
• Search for {word} in {form_word} form in all

languages?
• Get {word} translations in {form_word} in any

language?
• Lookup {word} in various languages,

{form_word}?
• How to express {word} in {form_word} across

languages?
• Find {word} equivalents in {form_word}

across languages?
• Translate {word} into {form_word} in any lan-

guage?

Few-Shot Prompt Example for GPT-3.5 Turbo

Utterance 1:
Apfel gender in German
SPARQL 1:
SELECT ?lexeme ?qitem ?lemma ?qitemLabel
WHERE
{

VALUES ?lemma {'Apfel'@de} .
?lexeme wikibase:lemma ?lemma ;

wdt:P5185 ?qitem.
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'

}
}

Utterance 2:
medailon gender Czech
SPARQL 2:
SELECT ?lexeme ?qitem ?lemma ?qitemLabel
WHERE
{

VALUES ?lemma {'medailon'@cs} .
?lexeme wikibase:lemma ?lemma ;

wdt:P5185 ?qitem.
SERVICE wikibase:label {
bd:serviceParam wikibase:language 'en'

}
}

Utterance:
What is Probekörpers gender in German?
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B Lexicographical Data on Wikidata

This section provides essential background on lexi-
cographic data and its representation on Wikidata.

B.1 Lexicographic Data
Lexicography is the field concerned with dictio-
naries and reference works. Lexicographic data
encompasses all information contained within dic-
tionaries or reference works, which may range from
traditional print dictionaries to digital databases
and KGs. The ontology for lexicographic data
on the Semantic Web is primarily supported by
OntoLex-Lemon (McCrae et al., 2017), which
is based on the Lexicon Model for Ontologies
(lemon). This model relies on LexInfo (Cimiano
et al., 2011), LMF (Francopoulo et al., 2006), and
LIR (Montiel-Ponsoda et al., 2008). The OntoLex
lexicography module, known as lexicog (Bosque-
Gil et al., 2017), provides key concepts like Lexi-
calEntry and LexicalSense that were influential in
Wikidata’s development. Wikidata has expanded
beyond representing concepts to include structured
descriptions of words through lexemes, forms, and
senses. The lexicographic data module follows the
Wikibase data model, extended with the Wikibase-
Lexemes ontology module that introduces the data
types Lexemes, Forms, and Senses.

Lexemes A lexeme is a fundamental vocabulary
unit that can take various forms including simple
words, complex words, phrasal words, and multi-
word expressions. In Wikidata, lexemes have:

• Unique IDs starting with ‘L’, e.g., L870817
for ‘Steilkurve’ in German

• Lemmas providing human-readable represen-
tations, e.g., ‘book’

• Language specification using Q-items, e.g.,
Q1860 for English

• Lexical category indicated by Q-items, e.g.,
Q34698 for adjective

• Statements describing properties not specific
to forms or senses

• Forms for each combination of grammatical
features

• Senses describing different meanings

Lemmas A lemma serves as a location
pointer for information within a reference
work. In Wikidata, lemmas are implemented
as MultilingualTextValues6 to accommodate

6https://www.mediawiki.org/wiki/Wikibase/
DataModel#MultilingualTextValues

languages with active diagraphia such as Serbian
which uses both Cyrillic and Latin alphabets.
The canonical form of the lexeme, typically the
infinitive form of verbs, is used as the lemma. For
example, the lemma for the English noun ‘color’
would include both ‘colour’ for British English
and ‘color’ for American English. Further, lemmas
are not unique, and the combination of lemma,
language, and lexical category is not unique either.
For instance, there are two German nouns with the
lemma ‘See’ that differ only in gender, with ‘der
See’ meaning ‘the lake’ and ‘die See’ meaning ‘the
sea’. These two meanings cannot be understood as
a single lexeme, as they have different forms based
on their gender. In RDF, Wikidata lexemes are rep-
resented as ontolex:LexicalEntry, connected to
their senses with the ontolex:sense property and
to their forms with the ontolex:lexicalForm
property. Each lexeme has an associated
lemma (wikibase:lemma) and language
(dct:language).

Senses A sense represents one of the multiple
meanings a word can have, arising from polysemy
or homonymy. In Wikidata, senses are attributed to
lexemes and identified by unique IDs (lexeme ID +
-S + decimal number as in L16168-S1 for the act
of booking in the “book” lexeme L16168). Each
sense typically includes a gloss providing a natural
language definition and may have statements de-
scribing relationships with other senses and items
(synonyms, antonyms, etc.).

Forms A form refers to the specific manifestation
of a lexeme in a grammatical context. In Wikidata,
forms have unique identifiers (lexeme ID + -F +
decimal number as in L16168-F1 for the simple
past of ‘book’) and are characterized by grammati-
cal features and statements providing information
about usage, pronunciation, etc.

Properties Properties model relationships be-
tween subjects and objects in KGs. In Wikidata,
properties describe the data value of a statement
and have labels, descriptions, and aliases in mul-
tiple languages. Each property has a specific data
type and a unique identifier with a P prefix. Lex-
icographic properties are a subset used with the
WikibaseLexeme data model.

https://www.mediawiki.org/wiki/Wikibase/DataModel#MultilingualTextValues
https://www.mediawiki.org/wiki/Wikibase/DataModel#MultilingualTextValues


C Evaluation

Category Property

Linguistic
Properties

- grammatical gender (P5185)
- conjugation class (P5186)
- word stem (P5187)
- derived from lexeme (P5191)
- combines lexemes (P5238)
- homograph lexeme (P5402)
- valency (P5526)
- requires grammatical feature (P5713)
- paradigm class (P5911)
- grammatical aspect (P7486)
- predicate for (P9970)

Historical
References

- attested in (P5323)
- first attested from (P6684)

Syntactic
Functions

- auxiliary verb (P5401)
- classifier (P5978)
- location of sense usage (P6084)
- usage example (P5831)
- creates lexeme type (P5923)
- false friend (P5976)

Semantic
Relations

- synonym (P5973)
- antonym (P5974)
- troponym of (P5975)
- said to be the same as lexeme (P11577)
- pertainym of (P8471)

Orthographic /
Phonetic
Features

- Han character in this lexeme (P5425)
- IPA transcription (P898)
- X-SAMPA code (P2859)
- Slavistic Phonetic (P5276)
- pronunciation (P7243)

Translation
- translation (P5972)
- variety of lexeme, form or sense
(P7481)

Stylistic and
Phonological

Attributes

- language style (P6191)
- collective noun for animals (P6571)
- tone or pitch accent class (P5426)

Table C.1: A taxonomic classification of Wikidata Lexi-
cographic Properties organized by categories

For the granularity test, the following checks are
performed:

• The response must start with either SELECT or
ASK

• If it starts with SELECT, there must be at least
one variable starting with ? before the WHERE
clause

• If it starts with ASK, there must be a WHERE
clause following directly after

• Every { must have a corresponding }
• The response must not contain the keyword
VALUES

• The response must contain at least one of the
following variables: ?lexeme, ?lemma, ?form,
?sense, ?qitem, ?qitemlabel

• The response must not contain any Q-items
that are not in the known Q-items

Index Utterance

1 what is the definition of low birth weight
2 what does the prefix re mean in medical terminology
3 what does e/m stand for in medical terms
4 what does ncd stand for in medical terms
5 what does acs stand for in medical terms
6 in military terms what does gi stand for
7 what does pvc stand for in medical terms
8 what does mi stand for in medical terms
9 what is a pa c in medical terms
10 what does la stand for in medical terms
11 what does ts stand for in medical terms
12 how do you write twice a day in medical terms
13 what does dc stand for in medical terms
14 what does ta stand for in medical terms
15 what does ibm stand for in medical terms
16 what is the definition of an asthma attack
17 what is the full meaning of cpr in first aid
18 what is the meaning of rx in medical line
19 meaning of od and bd in medical term
20 medical term meaning condition of stones in the ureters

Table C.2: Utterances potentially targeting lexico-
graphic information in one of the clusters of the Google
Templates. This cluster is dominated by utterances
about medical abbreviations. However, the presence
of an utterance discussing military abbreviations (in-
dex 6), suggests that the clustering considers not only
the topic of the utterance, but also its lexicographical
category.


