Literary Translations and Synthetic Data for Machine Translation of Low-resourced Middle Eastern Languages #### Sina Ahmadi, Razhan Hameed, Rico Sennrich University of Zurich, Switzerland & Vox AI, Netherlands Machine Translation: fine-tuning NLLB ## Strategic data curation is key: carefully selected small datasets outperform synthetic datasets for low-resource languages. ### **Experimental Results** - Fine-tuned NLLB (600M) with related language embeddings across different data combinations - Quality > Quantity: Manual alignment (PM) achieves highest average BLEU (7.38) despite being smaller than LLM dataset (PL: 5.64) - Best Performance: Hawrami reaches 15.46 BLEU, significant improvement over 0.9 baseline - Cross-linguistic Interference: Adding data for one language can hurt others - Dialectal Variation: Performance varies significantly within dialects - Overall Improvement: All languages show substantial gains over baseline, with average BLEU increasing from 1.68 to 7.38 (PM) | Language | Baseline | P | PM | PV | PMV | PL | PMVL | PML _{Zazaki} | |----------------------------------|----------|------|------------------------|------------------|------------------|------------------|------------------|-----------------------| | Luri Bakhtiari ^P | 0.75 | 4.38 | 3.67 ± 0.15 | 3.55 ± 0.16 | 3.78 ± 0.29 | 3.37 ± 0.39 | 3.26 ± 0.41 | 3.04 ± 0.19 | | Gilaki ^{PMVL} | 1.98 | 2.73 | 4.22 ± 0.15 | 3.18 ± 0.13 | 3.92 ± 0.26 | 3.44 ± 0.17 | 3.49 ± 0.16 | 2.94 ± 0.18 | | $Hawrami^{PMVL}$ | 0.9 | 8.23 | 15.46 ± 0.48 | 11.55 ± 2.78 | 10.86 ± 0.54 | 8.11 ± 0.11 | 8.93 ± 0.70 | 10.34 ± 2.15 | | Laki Kurdish ^{PML} | 1.89 | 6.33 | 9.11 \pm 0.67 | 7.18 ± 2.13 | 6.81 ± 0.79 | 4.80 ± 0.37 | 4.39 ± 0.47 | 5.43 ± 0.80 | | ${f Mazandarani}^{ m PL}$ | 1.32 | 5.23 | 5.50 ± 0.30 | 5.05 ± 0.83 | 5.32 ± 0.22 | 4.34 ± 0.28 | 4.22 ± 0.12 | 4.62 ± 0.22 | | Southern Kurdish ^{PMVL} | 2.77 | 9.93 | 10.64 ± 0.46 | 8.68 ± 0.27 | 8.99 ± 0.60 | 7.61 ± 0.36 | 7.80 ± 0.48 | 8.34 ± 0.21 | | Talysh ^P | 1.03 | 3.01 | 6.70 ± 0.52 | 5.22 ± 2.28 | 4.21 ± 1.43 | 2.36 ± 0.29 | 2.32 ± 0.56 | 3.66 ± 1.21 | | Zazaki ^{PL} | 2.82 | 3.45 | 3.75 ± 0.30 | 2.55 ± 0.45 | 3.67 ± 0.35 | 11.08 ± 0.89 | 11.54 \pm 0.50 | 9.99 ± 0.14 | | Average | 1.68 | 5.41 | 7.38 \pm 0.19 | 5.87 ± 0.97 | 5.94 ± 0.22 | 5.64 ± 0.27 | 5.74 ± 0.21 | 6.04 ± 0.48 | - Manual Translation (PARME): Native speakers translate 25,334 English sentences into 8 Middle Eastern languages through participatory research - Sentence Alignment: Align 25 translated books/articles to original English texts using manual expert alignment (M) and automatic **Vecalign (V)** > 25,203 pairs - LLM Augmentation: Few-shot prompting with Gemini-2.0-flash and LLaMa on monolingual corpora > 221,774 pairs - Final Dataset: 272,311 total sentence pairs across PARME (P), Manual (M), Vecalign (V), and LLM (L) sources with varying coverage per language | Language | P | M | V | L | |------------------------|--------|--------|--------|---------| | Luri Bakhtiari (BQI) | 999 | 0 | 0 | 0 | | Gilaki (GLK) | 3420 | 999 | 1391 | 22467 | | Hawrami (HAC) | 5796 | 7050 | 8367 | 49987 | | Laki Kurdish (LKI) | 1487 | 1220 | 0 | 0 | | Mazandarni (MZN) | 2345 | 0 | 0 | 49328 | | Southern Kurdish (sdн) | 7806 | 3681 | 2495 | 49992 | | Talysh (TLY) | 1107 | 0 | 0 | 0 | | Zazaki (zza) | 2374 | 0 | 0 | 50000 | | Sum | 25,334 | 12,950 | 12,253 | 221,774 | ### Conclusion - Manual alignment outperforms other datasets, achieving 7.38 vs 5.64 average BLEU - Adding data for one language can hurt others in multilingual settings - Dialectal variation matters: Performance varies significantly across varieties - There are significant performance variation across different varieties in MT