

Cross-lingual Word Embeddings for Translation Inference

Sina Ahmadi Atul Kr. Ojha Shubhanker Banerjee John P. McCrae

Data Science Institute, NUI Galway

european lexicographic

HOST INSTITUTIONS

NUI Galway OÉ Gaillimh

NUIG's submission to TIAD 2021

- Submitted five systems based on graph analysis and cross-lingual word embeddings
- This year's submission is in line with the previous year's submission

sfi research centre for data analytics

Approach 1: Exploring the graph structure

Approach 1: Graph Analysis

- 1. ULD_OnetaSVR: We use McCrae and Arcan's algorithm (submitted to TIAD 2020) as features to train a classifier
- 2. ULD_graphSVR: We create regression models based on:
 - *d_{min}(n, m)*: The minimum distance in the graph between two nodes.
 - *N*_{*}(*n*, *m*): The number of paths between the nodes of any length.
 - $N_2(n, m)$: The number of paths between the nodes of length 2.
 - *a*_{*}(*n*): The number of nodes reachable from node *n*.
 - $a_1(n)$: The number of nodes directly connected to node *n*.

Approach 1: Graph Analysis

For ULD_graphSVR, we use the following five features (based on One-Time Inverse Consultation or OTIC) to train a support vector regression models:

Approach 1: Limitations due to coverage

Using unsupervised cross-lingual word embedding mapping techniques, find a **mapping between the monolingual word embedding spaces** of the source and target languages.

- VecMap*
- MUSE**

Both methods, induce a seed lexicon automatically assuming approximate

isomorphism between source and target spaces

* Artetxe, M., Labaka, G., & Agirre, E. (2017, July). Learning bilingual word
embeddings with (almost) no bilingual data. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 451-462).
** Lample, G., Conneau, A., Denoyer, L., & Ranzato, M. A. (2017). Unsupervised
machine translation using monolingual corpora only. arXiv preprint arXiv:1711.00043.

A translation matrix **W** is learned based on the spaces X and Y

Approach 2: Muse

- a mapping is learned using the MUSE* unsupervised method and fastText monolingual embeddings of French, English and Portuguese
- the mappings are used to create new translation pairs between the 10 most nearest translations in the target language using cosine similarity
- The cosine similarity score is considered as the confidence score in the final submission
- the part-of-speech of the source word is used for the target predictions as well

Approach 2: VecMap*

- an unsupervised method based on cross-lingual embeddings
- only focused on English-French
- using pre-trained French and English fastText monolingual embedding models
- pre-trained UDPipe 2.5 models framework to generate the part-of-speech features (only of the target (French) language)
- the generated parts-of-speech tags were mapped with parts-of-speech tags of the shared task

t-SNE visualization of *chaotique* (adjective in French) in the MUSE multilingual word embeddings of French and Portuguese

0.73	plus	less adverb	
0.68	plus	more noun	
0.68	plus	more adverb	
0.68	plus	very adverb	
0.66	plus	than adverb	
0.65	plus	quite adverb	
0.63	plus	most adverb	
0.62	plus	comparatively adver	rb
0.62	plus	even adverb	
0.61	plus	extremely adverb	
0.60	plus	much adverb	

0.73	plutonium	uranium	noi	un
0.7	plutonium	plutonium	no	un
0.68	plutonium	thorium	nou	n
0.67	plutonium	reactor	nou	n
0.65	plutonium	deuteriun	n n	oun
0.64	plutonium	fission	noun	1
0.63	plutonium	radioactiv	/ity	noun

0.5	plurinominal	electora	al adjective
0.55	plurinomina	al ballot	adjective
0.54	plurinomina	al elect	adjective
0.87	plusieurs	several	determiner
0.77	plusieurs	many d	leterminer
0.74	plusieurs	various	determiner
0.66	plusieurs	multiple	determiner

Averaged systems results

SYSTEM	PRECISION	RECALL	F1-Measure	COVERAGE
ULD_graphSVR	0.70	0.49	0.57	0.69
baseline-Word2Vec	0.69	0.23	0.33	0.40
ULD_MUSE	0.29	0.41	0.33	0.65
baseline-OTIC	0.78	0.18	0.29	0.28
ULD_onetaSVR	0.76	0.10	0.17	0.14
ULD_oneta2	0.64	0.07	0.13	0.11
ULD_vecmap	0.36	0.01	0.01	0.02

Results (English-French)

Future work

- word and contextual embeddings such as BERT should be studied for this task
- lemmatization and part-of-speech tagging should also be taken into account when using word and contextual embeddings which lack such information

t-SNE visualization of *fish* (noun, verb) in BERT vector for each occurrence in the SemCor corpus (http://web.eecs.umich.edu/~mihalcea/down loads.html#semcor)

BERT Embeddings for Senses of the Word "fish.n_v"

Insight Sti RESEARCH CENTRE FOR DATA ANALYTICS

Questions?

