Empowering Citizens. Smarter Societies.

Inferring Translation Candidates for Multilingual Dictionary Generation with Multi-Way Neural Machine Translation

Mihael Arcan, Daniel Torregrosa*, Sina Ahmadi* and John P. McCrae

A World Leading SFI Research Centre

s publication has emanated from research supported in part by a research grant from Science Poundation Ireland (SFI) under Grant Number SFI/12/RC/2289, oo-funded by the European Regional Development Fund, and the European Union's Horizon 2020 research and innovation programme under grant agreement No 731015, ELEXIS - European Lexical infrastructure.

Introduction

Neural machine translation

Results

Dictionary data

Conclusion

Motivation

- Knowledge bases are useful for many applications, but available in few languages
- The creation and curation of knowledge bases is expensive
- Hence, few or no knowledge bases in most languages
- Can we use machine translation to translate knowledge?

Overview

- Multi-way neural machine translation without the targeted direction
- · Continuous training with a small curated dictionary
- Discovery of new bilingual dictionary entries

Targeted languages

Introduction

Neural machine translation

Results

Dictionary data

Conclusion

Machine translation before 2014

- Rule-based machine translation
 - Humans write rules
 - Highly customisable
 - High maintenance cost
- Phrase-based statistical machine translation
 - Learns from parallel corpus
 - Less control on the translations

Word embeddings

- Fixed size numerical representation for words
- From one-hot space (one dimension per different word) to embedding space
- The embedding vector represents the context where the word appears

Insight

Long-short term memory

Based on tex.stackexchange.com/questions/332747/how-to-drawaydiagram-of-long-short-term-memory entre

Bi-directional LSTM

Based on github.com/PetarV-/TikZ

Insight Centre for Data Analytics

Subword units

- One-hot vocabulary space has to be limited due to performance issues
- This generates a lot of out-of-vocabulary entries
- To minimize the effect, we use subword units instead of words

Insight

Byte pair encoding

- BPE is a compression technique
- It starts with all the different characters in the corpus
- The most frequent character combination is selected as a BPE operation
- This is repeated until the desired number of BPE is reached
- The final size of the vocabulary is the number of BPE operations + the alphabet

low lower big bigger

low_lower_big_bigger

low_lower_big_bigger

l=ow_l=ower_**bi**g_**bi**gger

l=ow_l=ower_b=ig_b=igger

Byte pair encoding II

Present	bebo bebes bebe	bebemos bebéis beben	Conditional	bebería beberías bebería	beberíamos beberíais beberían
Preterit	bebí bebiste bebió	bebimos bebisteis bebieron	Future	beberé beberás beberá	beberemos beberéis beberán
Imperfect	bebía bebías bebía	bebíamos bebíais bebían			

Byte pair encoding II

Present	beb o beb es beb e	beb emos beb éis beb en	Conditional	beb ería beb erías beb ería	beb eríamos beb eríais beb erían
Preterit	beb í beb iste beb ió	beb imos beb isteis beb ieron	Future	beb eré beb erás beb erá	beb eremos beb eréis beb erán
Imperfect	beb ía beb ías beb ía	beb íamos beb íais beb ían			

Insight Contre for Data Analytics

Multi-way model

- The model receives corpus in several different languages both for source and target sentences
- Each input sentence is annotated with the source language and the requested target language
- In our case, Spanish-English, French-Romanian and Italian-Portuguese

Insight Contro for Day Analysis

Continuous training

- After training, the network is seldom able to produce text in the requested language other than the training one
- For example, if requested to translate Spanish to French, it will generate English
- We continue the training with a small corpus of sentences

Insight Contre for Data Analytics

Dictionary data

We used three different dictionaries to continue training the system

- Spanish to French Apertium dictionary (paper)
- Spanish-French, Spanish-Portuguese and French-Portuguese dictionaries generated from Apertium data (task)
 - By following a cycle-based approach
 - By following a path-based approach

Part of speech

- The NMT models were trained without part of speech (POS) data
- To assign POS, we use monolingual dictionaries automatically extracted from Wiktionary
- If > the source word is in the source-language dictionary; and
 - > the target word is in the target-language dictionary; and
 - > they have one or more POS tags in common,
- generate one entry per shared POS

Introduction

Neural machine translation

Results

Dictionary data

Conclusion

Evaluation

• We used a dictionary automatically extracted from Wiktionary as gold standard

 For those systems that have confidence intervals, we calculate the precision and recall for all possible thresholds

Insight

Results (paper)

Introduction

Neural machine translation

Results

Dictionary data

Conclusion

Graph-based approaches

Basic idea: Retrieve translations based on the graph of languages Two definitions:

- Language graph refers to the Apertium dictionary graph
- Translation graph refers to a graph where vertices represent a word and edges represent the translations in other languages.

Insight

Cycle-based approach

Apertium translations (black lines) in English (EN), French (FR), Basque (EU) and Esperanto (EO), and discovered possible translations (gray lines) and synonyms (red lines).

Insight Centre for Data Analytics

Path-based approach

Traverse all simple paths using pivot-oriented inference

(Task) Weight translations w.r.t. frequency and path length

Results (task, Wiktionary reference)

Introduction

Neural machine translation

Results

Dictionary data

Conclusion

Conclusion

- Using neural machine translation with
 - Existing bilingual knowledge (Paper)
 - Discovered bilingual knowledge (Task)

• to generate new dictionaries.